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Preface

Modern chromatography began when Martin and Synge developed
“partition chromatography” in 1941. In 1958, Kovats proposed an index to
predict gas chromatography retention times, leading to discussion of the
mechanism of retention and studies to validate retention time prediction.
With the separation of saccharides using a combination of ion-exchange
resin and aqueous ethanol without ion-exchange by Samuelson et al. in 1965,
a variety of combination systems were investigated for liquid chromato-
graphic separation. In particular, the relationship between the structure and
the chromatographic behavior of a variety of mono- and di-substituted
benzenes on an anion-exchange resin was studied with anhydrous ethanol as
the eluent. It was found that retention depends on the type and position of
the substituents, with the degree of adsorption being, at least partially,
related to electron-withdrawing ability. The results suggested that molecular
adsorption on the solid phase occurred by the formation of either charge-
transfer or hydrogen-bonding interactions between the analyte and the
anionic groups on the resin. These findings were confirmed in studies using
a variety of packing materials, ion exchangers, bonded-phase silica gels, and
organic polymers for the chromatographic separation of organic acids and
saccharides in organic solvent mixtures. These results also supported the
importance of hydrogen bonding for analyte retention on the solid phase.
Similar experiments were carried out to analyze the chromatographic
behavior of phthalate esters in aqueous solvent systems, and showed that
elution order was related to solubility (hydrophobicity), leading, in 1974, to a
liquid chromatography classification scheme based on solubility factors, as
proposed by Hanai. Furthermore, in 1979, Hanai et al. demonstrated an
optimized method for reversed-phase liquid chromatography using the
octanol-water partition coefficient. The quantitative analysis of retention
mechanisms proved to be difficult, however, in the absence of fast personal
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vi Preface

computers and computational software designed for general use by
non-specialists.

In recent years, analytical chemists have increasingly turned their attention
to drug discovery and drug analysis and to solve fundamental biologically
significant questions in physiology and genetics. New technologies have been
developed, and a variety of instruments have been redesigned for biomedical
applications. For example, the development of capillary column gas chro-
matography, in which separation power is based on a very high theoretical
plate number, answered questions about sample purity, and the development
of high-performance liquid chromatography opened a new era in bio-related
fields by allowing faster separations of unstable macromolecules. The
improved thin layer liquid chromatography technique, high-performance
planar liquid chromatography, is capable of the simultaneous analysis of
many samples, providing an overview of the components present in complex
mixtures, and permitting two-dimensional separation under different
conditions with the possibility of multiplexed detection.

Capillary column gas chromatography (GC)/mass spectrometry (MS) has
also been used to achieve more difficult separations and to perform the
structural analysis of molecules, and laboratory automation technologies,
including robotics, have become a powerful trend in both analytical
chemistry and small molecule synthesis. On the other hand, liquid
chromatography (LC)/MS is more suitable for biomedical applications than
GC/MS because of the heat sensitivity exhibited by almost all biomolecules.
More recent advances in protein studies have resulted from combining
various mass spectrometers with a variety of LC methods, and improvements
in the sensitivity of nuclear magnetic resonance spectroscopy (NMR) now
allow direct connection of this powerful methodology with LC. Finally, the
online purification of biomolecules by LC has been achieved with the
development of chip electrophoresis (microfluidics).

As a complementary approach to these technological advances,
computational chemical analysis is a promising technique with the potential
to analyze the mechanisms of molecular interaction between analytes
and solid phases, especially given the feasibility of modeling the three-
dimensional structures of biological macromolecules, such as proteins.
Importantly, this technology can be easily used to study the retention
mechanisms in chromatography for a variety of model phases. Furthermore,
theoretical calculations can provide significant insight into organic reaction
mechanisms, which can be applied to study highly sensitive detection in
chromatography, such as bromate and chemiluminescence detection. As a
consequence, combining chromatography and computational chemistry
offers new possibilities in developing a quantitative description of molecule
interactions relevant to analytical separations. Furthermore, a combination
of quantitative molecular recognition analysis and electron transfer, can
permit the study of enzyme reaction mechanisms.

In this book, I propose and describe one approach to combining these
methods, and illustrate the power of this strategy in biological applications.



Preface vii

For example, this method reveals a high correlation coefficient between
measured capacity ratios and the sum of theoretically calculated molecular
interaction energy and molecular property values, opening the possibility for
quantitative analysis of chromatographic retention mechanisms.

This book is a pebble thrown in a pond. I hope the ‘ripples’ created will
stimulate new research into questions about the basic phenomena of
chromatographic separation and, perhaps, improve our understanding of
enzyme reaction mechanisms.

Toshihiko Hanai
Yokohama
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CHAPTER 1

Introduction

1.1 Fundamental Phenomena in Chromatography

The quantitative analysis of molecular interactions is of fundamental
interest, and the development of computer software has made it easy to
calculate the theoretical properties of molecules. Feasibility can be demon-
strated using simple, small molecules. Alkanes have demonstrated van der
Waals energy contribution, and alkanols demonstrated the additional
hydrogen-bonding energy contribution. lon-ion interactions were related to
the electrostatic energy contribution, and amino acids demonstrated the
contribution of steric hindrance.

Chromatography is one technique that is used to measure molecular
interaction strengths using model compounds, and an excellent technique
for measuring the relative physico-chemical values of molecules in a short
amount of time. Molecular recognition, the retention time difference, in
chromatography can be quantitatively studied. Typical molecular interaction
forces are clearly observed in different types of chromatography as the re-
tention time differences of analytes. The individual molecular interaction
forces are solubility factors. Chromatographic retention is based on the
combination of solubility factors. Consistent with the concept of “like dis-
solves like” proposed by Henry Freiser, the retention mechanisms of chro-
matography are the same. Different types of chromatography demonstrate
the typical molecular interaction forces, as summarized in Figure 1.1." If we
can reconstruct quantitatively obtained solubility factors, we can quantita-
tively analyze the chromatographic retention time.

Computational chemical analysis methods provide the molecular inter-
action energy as the sum of mainly van der Waals, hydrogen bonding, and
electrostatic energy values. The van der Waals energy is related to molecular
size, hence, the contact surface area between an analyte and an adsorbent
contributes to the molecular interaction energy. When hydrogen bonding
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2 Chapter 1

= o _- c
- > =, 5 £ s 5 '%
5 2Ee%Tsco®E
Interaction s o ° % ] jz g,,-g% e x 2 =
(Factors for retention) ° 5 S o é © 9ol 282 2 e
§ 8533823235858 %3
Name of chromatography > & o T & O T O 30 u &h
Size-exclusion ¢ o o
Reversed-phase e @ o ¢ O Q
Reversed-phase ion-pair © © ® ¢ O *
lon-pair partition e o o e ¢
lon-exchange e o o @ O ¢ ®
Normal-phase e o o ® @ Q &
Charge-transfer e o o e L N
Salting-out ® o © o o ® *
Ligand-exchange e o o e ¢
Chelation e e o L) °® *
Affinity ® & & & & & & & o o ¢
Chiral separation ® & o o & o o @ L]

-

# The most important @ important O depending on packing material

Figure 1.1 Classification in liquid chromatographic methods.
Reproduced from ref. 1.

exists between an analyte and an adsorbent, hydrogen-bonding energy
contributes to the molecular interaction energy. When ion-ion interactions
exist, electrostatic energy contributes to the molecular interaction energy.

The measurement of direct interactions reveals the different strengths of
molecular interactions between an analyte and the packing material surface
or liquid phase. In gas chromatography, the retained compounds are
vaporized and moved toward the column outlet. The analyte’s volatility in
the carrier gas affects the retention time.

In special cases, polar gases such as ammonia, formic acid and water are
doped into the carrier gas to improve the analyte’s solubility in the carrier
gas. In both supercritical fluid and liquid chromatography, the analyte
solubility in the carrier liquid affects the retention time. The carrier liquid is
called the eluent and/or the mobile phase. The prediction of retention times
in liquid chromatography is very difficult due to the lack of a solubility
prediction method. However, the retention can be predicted by computa-
tional chemical methods using model phases.’

General computational chemical analysis of liquid chromatographic re-
tention is performed without solvents in the calculation. Generally, mixed
solvents with and without pH-controlled ions are present as the eluent
components in liquid chromatography. At present, these solvent systems
cannot be handled by computational chemical calculations. The measure-
ment of direct interactions, however, reveals the different strengths of mo-
lecular interactions between an analyte and the packing material surface.
The difference in molecular interaction energy values can be used as a
relative retention time.

A typical example of a van der Waals energy contribution was observed
in the analysis of chromatographic retention using a graphitized carbon



