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PREFACE

According to its original definition, a symmetric space is a Riemannian
manifold whose curvature tensor is invariant under all parallel trans-
lations. The theory of symmetric spaces was initiated by E. Cartan in
1926 and was vigorously developed by him in the late 1920’s. By their
definition, symmetric spaces form a special topic in Riemannian geometry;
their theory, however, has merged with the theory of semisimple Lie
groups. This circumstance is the source of very detailed and extensive
information about these spaces. They can therefore often serve as
examples for the testing of general conjectures, On the other hand,
symmetric spaces are numerous enough and their special nature among
Riemannian manifolds so clear that a properly formulated extrapolation
to general Riemannian manifolds often leads to good questions and
conjectures.

The definition above does not immediately suggest the special nature
of symmetric spaces (especially if one recalls that all Riemannian
manifolds and all Kihler manifolds possess tensor fields invariant under
the parallelism). However, the theory leads to the remarkable fact that
symmetric spaces are locally just the Riemannian manifolds of the
form R* X G/K where R™ is a Euclidean n-space, G is a semisimple
Lie group which has an involutive automorphism whose fixed point set
is the (essentially) compact group K, and G/K is provided with a
G-invariant Riemannian structure. E. Cartan’s classification of all real
simple Lie algebras now led him quickly to an explicit classification of
symmetric spaces in terms of the classical and exceptional simple Lie
groups. On the other hand, the semlslmple Lie group G (or rather the
local isomorphism class of G) above is completely arbitrary; in this way
valuable geometric tools become available to the theory of semisimple
Lie groups. In addition, the theory of symmetric spaces helps to unify
and explain in a general way various phenomena in classical geometries.
Thus the isomorphisms which occur among the classical groups of low
dimensions are geometrically interpreted by means of isometries; the
analogy between the spherical geometries and the hyperbolic geometries
is a special case of a general duality for symmetric spaces.

On a symmetric space with its well-developed geometry, global function
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viii PREFACE

theory becomes particularly interesting. Integration theory, Fourier
analysis, and partial differential operators arise here in a canonical
fashion by the requirement of geometric invariance. Although these
subjects and their relationship are very well developed in Euclidean
space (Lebesgue integral, Fourier integral, differential operators with
constant coefficients) the extension to general symmetric spaces leads
immediately to interesting unsolved problems. The two types of non-
Euclidean symmetric spaces, the compact type and the .noncompact
type, offer different sorts of function-theoretic problems. The sym-
metric spaces of the noncompact type present no topological difficulties
(the spaces being homeomorphic to Euclidean spaces) and their function
theory ties up with the theory of infinite-dimensional representations of
arbitrary semisimple Lie groups, which has made great progress in
recent years. For the symmetric spaces of the compact type, on the other
hand, the classical theory of finite-dimensional representations of
compact Lie groups provides a natural framework, but the geometry
of the spaces enters now in a less trivial fashion into their function
theory.

The" objective of the present book is to provide a self-contained
introduction to Cartan’s theory, as well as to more recent developments
in the theory of functions on symmetric spaces.

Chapter I deals with the differential-geometric prerequisites, and the
basic geometric properties of symmetric spaces are developed in
Chapter IV. From then on the subject is primarily Lie group theory,
and in Chapter IX Cartan’s classification of symmetric spaces is
presented. Although this classification may be considered as the culmina-
tion of Cartan’s theory, we have confined Chapter IX to proofs of
general theorems involved in the classification and to a description of
Cartan’s list. The justification of this notable omission is first that the
usefulness of the classification for experimentation is based on its
existence rather than on the proof that it exhausts the class-of symmetric
spaces; secondly this omission enabled us to include Chapter X (on
functions on symmetric spaces) where it is felt that more open questions
present themselves. At some places we indicate connections with topics
in classical analysis, such as Fourier analysis, theory of special functions
(Bessel, Legendre), and integral theorems for invariant differential
equations. However, no account is given of the role of symmetric
spaces in the theory of automorphic functions and analytic number
theory, nor have we found it possible to include more recent topological
investigations of symmetric spaces.

Each chapter begins with a short summary and ends with an identifica-
tion of sources as well as some comments on the historical development..



SUGGESTIONS TO READER ix

The purpose of these historical notes is primarily to orient the readér
in the vast literature and secondly they are an attempt to give credit
where it is due, but here we must apologize in advance for incom-
pleteness as well as possible inaccuracies.?

This book grew out of lectures given at the University of Chicago 1958
and at Columbia University 1959-1960. At Columbia I had the privilege
of many long and informative discussions with Professor Harish-
Chandra; large parts of Chapters VIII and X are devoted to results of
his. I am happy to express here my deep gratitude to him. I am also
indebted to Professors A. Kordnyi, K. deLeeuw, E. Luft and H. Mirkil
who read large portions of the manuscript and suggested many
improvements. Finally I want to thank my wife who patiently helped
with the preparation of the manuscript and did all the typing.

Suggestions to the Reader

Since this book is intended for readers with varied backgrounds we
give here some suggestions for its use.

Chapter I, Chapter IV, §1, and Chapter VIII, §1-§3 can be read
independently of the rest of the book. These parts would give the reader
an incomplete but short and elementary introduction to modern dif-
ferenctial geometry, with only advanced calculus and some point-set
topology as prerequisites,

Chapter I, §1- §6, Chapter II, and Chapter III can be read in-
dependently of the rest of the book as an introduction to semisimple Lie
groups. However, Chapters II and III assume some familiarity with the
elements of the theory of topological groups.

Chapters I - IX require no further prerequisites. Chapter X, however,
makes use of a few facts from Hilbert space theory and assumes some
knowledge of measure theory.

Each chapter ends with a few exercises. With a few possible exceptions
(indicated with a star) the exercises can be wofked out with methods
developed in the text. The starred exercises are theorems which might
have been included in the text, but were not found necessary for the
subsequent chapters.

S. Helgason

t “En hvatki es missagt es { freBum pessum, p4 es skylt at hafa pat heldr, es sannara
reynisk’”; [Ari Frodi: [slendingabok (1124)1.
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CHAPTER |

ELEMENTARY DIFFERENTIAL GEOMETRY

This introductory chapter divides in a natural way into three parts: §1-§3 which
deal with tensor fields on manifolds, §4-§8 which treat general properties of
affine connections; and §9-§14 which give an introduction to Riemannian geometry
with some emphasis on topics needed for the later treatment of symmetric spaces.

§1-§3. When a Euclidean space is stripped of its vector space structure and
only its differentiable structure retained, there are many ways of piecing together
domains of it in a smooth manner, thereby obtaining a so-called differentiable
manifold. Local concepts like a differentiable function and a tangent vector can
still be given a meaning whereby the manifold can be viewed ‘‘tangentially,”’ that
is, through its family of tangent spaces as a curve in the plane is, roughly
speaking, determined by its family of tangents. This viewpoint leads to the
study of tensor fields, which are important tools in local and global differential
geometry. They form an algebra D(M), the mixed tensor algebra ower the
manifold M. The alternate covariant tensor fields (the differential forms) form
a submodule (M) of D(M) which inherits a multiplication from D(M), the
exterior multiplication. The resultifig algebra is called the Grassmann algebra
of M. Through the work of E. Cartan the Grassmann algebra with the exterior
differentiation d has become an indispensable tool for dealing with submanifolds,
these being analytically described by the zeros of differential forms. Moreover,
the pair (U(M), d) determines the cohomology of M via'de Rham’s theorem,
which however will not be dealt with here. .

§4-§8. The concept of an affine connection was first defined by Levi-Civita
for Riemannian manifolds, generalizing significantly the notion of parallelism for
Euclidean spaces. On a manifold with a countable basis an affine connection always
exists (see the exercises following this chapter). Given an affine connection on
a manifold M there is to each curve y(f) in M associated an isomorphism between
any two tangent spaces M) and M,,. Thus, an affine connection makes it
possible to relate tangent spaces at distant points of the manifold. If the tangent
vectors of the curve y(2) all correspond under these isomorphisms we have the
analog of a straight line, the so-called geodesic. The theory of affine connections
mainly amounts to a study of the mappings Exp, : M, — M under which straight
lines (or segments of them) through the origin in the tangent space M, correspond
to geodesics through p in M. Each mapping Exp, is a diffeomorphism of a neigh-
bothood of 0 in M, into M, giving the so-called normal coordinates at p. Some
other local properties of Exp, are given in §6, the existence of convex neigh-
borhoods and a formula for the differential of Exp,.

An affine connection gives rise to two important tensor fields, the curvature
tensor field and the torsion tensor field which in turn describe the affine connec-~
tion through E. Cartan’s structural equations [(6) and (7), §8)].
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§9-§14. A particularly interesting tensor field on a manifold is the so-called
Riemannian structure. This gives rise to a metric on the manifold in a canonical
fashion. It also determines an affine connection on the manifold, the Riemannian
connection; this affine connection has the property that the geodesic forms the
shortest curve between any two (not too distant) points. The relation between the
metric and geodesics is further developed in §9-§10. The treatment is mainly
based on the structural equations of E. Cartan and is independent of the Calculus
of Variations.

The higher-dimensional analog of the Gaussian curvature of a surface was
discovered by Riemann. Riemann introduced a tensor field which for any pair
of tangent vectors at a point measures the corresponding sectional curvature,
that is, the Gaussian curvature of the surface generated by the geodesics tangent
to the plane spanned by the two vectors. Of particular interest are Riemannian
manifolds for which the sectional curvature always has the same sign. The irreduci-
ble symmetric spaces are of this type. Riemannian manifolds of negative curvature
are considered in §13 owing to their importance in the theory of symmetric spaces.
Much progress has been made recently in the study of Riemannian manifolds
whose sectional curvature is bounded from below by a constant > 0. However,
no discussion of these is given since it is not needed in later chapters. The last
section deals with totally geodesic submanifolds which are characterized by the
condition that a geodesic tangent to the submanifold at a point lies entirely in it.
In contrast to the situation for general Riemannian manifolds, totally geodesic
submanifolds are a common occurrence for symmetric spaces.

§1. Manifolds

Let R™ and R™ denote two Euclidean spaces of m and # dimensions,
respectively. Let O and O’ be open subsets, O C R®, O’ C R* and
suppose ¢ is a mapping of O into O'. The mapping ¢ is called dzfferen-
tiable if the coordinates y;(¢(p)) of p(p) are differentiable (that is, inde-
finitely differentiable) functions of the coordinates x,(p), p € O. The
mapping o is called analytic if for each point p € O there exists a neigh-
borhood U of p and # power series P; (I < j < #) in m variables such
that 3(0(a) = Py(rs(a) — #1(Br r nd) — 2a(p)) (L <j <) for
geU. A dlﬂerentlable mappmg @:0 — O’ is called a dzﬂeomorphzsm of
O onto O’ if (0) = O’, ¢ is one-to-one, and the inverse mapping ¢!
is differentiable. In the case when # = 1 it is customary to replace the
term “mapping” by the term “function,”

An analytic function on R™ which vanishes on an open set is identically
0. For differentiable functions the situation is completely different. In
fact, if 4 and B are disjoint subsets of R™, A compact and B closed,
then there exists a differentiable function ¢ which is identically 1 on A
and 1dent1cally 0 on B. The standard procedure for constructing such
a function ¢ is as follows:
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Let 0 < a < b and consider the function f on R defined by

exp( ]b— 1 ) ifa <x<b,
f@={  w—b x-—a

0 otherwise.

Then f is differentiable and the same holds for the function

o) = [ fwa /[ s a,

which has value 1 for x < a and 0 for x > b. The function ¢ on R™
given by
%1y ey %) = F(x3 + oo + x3,)

is differentiable and has values 1 for x? 4 ...+ 2% < a and 0 for
2+ ..+ x% >b. Let S and S’ be two concentric spheres in R™,
S’ lying inside S. Starting from ¢ we can by means of a linear trans-
formation of R™ construct a differentiable function on R™ with value 1
in the interior of S’ and value 0,outside S. Turning now to the sets 4
and B we can, owing to the compactness of 4, find finitely many spheres
S, (1 < ¢ < n), such that the corresponding open balls B, (1 < i < n),
form a covering of A (that is, 4 C U, B;) and such that the closed
balls B; (1 <7 < n) do not intersect B. Each sphere S; can be shrunk
to a concentric sphere S; such that the corresponding open balls B;
still form a covering of A. Let ; be a differentiable function on R™
which is identically 1 on B; and identically O in the complement of B;.
Then the function

p=1—(L =) (1 — ). (1 — )

is a differentiable function on R™ which is identically 1 on 4 and iden-
tically O on B.

Let M be a topological space. We assume that M satisfies the Hausdorf
separation axiom which states that any two different points in M can be
separated by disjoint open sets. An open chart on M is a pair (U, ¢)
where U is an open subset of M and ¢ is a homeomorphism of U onto
an open subset of R™

Definition. Let M be a Hausdorf space. A differentiable structure
on M of dimension m is a collection of open charts (U, ¢,)scq On M
where ¢, (U,) is an open subset of R™ such that the following conditions
are satisfied:

(M) M=U U,
aeA
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(M) For each pair «, 8 € 4 the mapping gzo¢;? is a differentiable
mapping of ¢ (U, N Up) onto gy (U, N Up).

(M;) The collection (U,, ¢,),c4 is a maximal family of open charts
for which (M) and (M) hold

A dzﬂerentzable manifold~(or C* manifold or simply mamfold) of
dimension m is a Hausdorf space with a differentiable structure of
dimension m. If M is a manifold, a local chart on M (or a local coordinate
system on M) is by definition a pair (Ua, @) Where a € 4. If p € U,
and @y (p) = (%y(p), ---, 2,(p)), the set U, is called a coordinate neighbor-
hood of p and the numbers x,(p) are called local coordinates of p. The

mapping @, : ¢ = (¥1(9), ---» %,u(q)), ¢ € U,, is often denoted {xy, ..., X}

Remark 1. Condition (M,) will often be cumbersome to check in
speciﬁc instances. It is therefore important to note that the condition
(M,) is not essential in the definition of a manifold. In fact, if only
(Ml) and (M,) are satisfied, the family (U,, ¢,),c4 can be extended in a
unique way to a larger family M of open charts such that (M,), (M,),
and (M) are all fulfilled. This is-easily seen by deﬁmng M as the set
of all open charts (¥, ¢) on M satisfying: (1) @(V) is an open set in R™;
(2) for each a € 4, ¢, 0 7! is a diffeomorphism of ¢(V n U,) onto

gV 1 U,).

Remark 2. If we let R™ mean a single point for m = 0, the preceding
definition applies. The manifolds of dimension 0 are then the discrete
topological spaces.

Remark 3. A manifold is connected if and only if it is pathwise
connected. The proof is left to the reader.

An analytic structure of dimension m is defined in a similar fashion.
In (M,) we just replace “differentiable” by “analytic.” In this case M
is called an amalytic manifold.

In order to define a complex manifold of dimension m we replace R™
in the definition of differentiable manifold by the m-dimensional complex
space C™. The condition (M,) is replaced by the condition that the m
coordinates of ¢; 0 ¢;(p) should be holomorphic functions of the

coordinates of p. Here a function f(z, ..., 2,,) of m complex variables
is called holomorphic if at each point (2?, ..., 29,) there exists a power
series

D g (51 = B (3 — &),

which converges absolutely to f(z,, ..., 2,) in a neighborhood of the
pomt
* 'The manifolds dealt with in the later chapters of this book (mostly
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Lie groups and their coset spaces) are analytic manifolds. From
Remark 1 it is clear that we can always regard an analytic manifold as
a differentiable manifold. It is often convenient to do so because, as
pointed out before for R™, the class of differentiable functions is much
richer than the class of analytic functions.

Let f be a real-valued function on a C* manifold M. The function f
is called differentiable at a point p € M if there exists a local chart
(U, ) with p.€ U, such that the composite function fogtis a
differentiable function on g (U,). The function f is called differentiable
if it is differentiable at each point p € M. If M is analytic, the function f
is said to be analytic at p € M if there exists a local chart (U, g,) with
p € U, such that fo ;' is an analytic function on the set olU,)-

Let M be a differentiable manifold of dimension m and let, § denote
the set of all differentiable functions on M. The set § has the following
properties:

(%) Let @y, ..., p, €T and let u be a differentiable function on R".
Then u(py, ..., ;) €F-

(¥,) Let f be a real function on M such that for each p € M there
exists a function g € § which coincides with f in some neighborhood
of p. Then f e &. .

(¥3) For each p € M there exist m functions @y, ..., ¢ € § and an
open neighborhood U of p such that the mapping ¢ —> (93(q), - 22(q))
(g € U)is a homeomorphism of U onto an open subset of R™. The set U
and the functions @y, ..., ¢,, can be chosen in such a way that each
f € coincides on U with a function of the form u(ey, ..., ,,) Where u
is a differentiable function on R™.

The properties (§,) and (J,) are obvious. To establish (&) we pick
a local chart (U, ¢,) such that p € U, and write ¢,(q) = (x1(q), -r 2.(9))
€ R™ for g € U,. Let S be a compact neighborhood of ¢, (p) in R™ such
that S is contained in the open set @,(U,). Then as shown earlier, there
exists a differentiable function ¢ on R™ such that ¢ has compact support?
contained in ¢ (U,) and such that yi(s) = 1 forall s € S. Let U = o71(S)
where S is the interior of § and define the functton ¢, (1 < i < m)on
M by {0 ifgeg U

—_— L q 23]
7@ = Lo@wel)  igeU.
Then the set U and the functions @y, ..., ¢, have the property stated

in (). In fact, if f €§, then the function fog;? is differentiable on
the set @, (U,).

t The support of a function is the closure of the set where the function is different
from 0.
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Proposition 1.4. Suppose M is a Hausdorf space and m an integer
> 0. Assume § is a collection of real-valued functions on M with the
properties §y, Ty, and §;. Then there exists a unique collection (U, @,),cq
of open charts on M such that (M), (M), and (M,) are satisfied ana' such
that the dzﬂerenttable Sfunctions on the resulting manifold are precisely the
members of .

For the proof we select for each p € M the functions ¢, ..., ¢,, and
the neighborhood U of p given by ;. Putting U, = U and ¢,g) =
(91(9), -» om(q)) (g € U) we obtain a collection (U,, p.)cq of open
charts on M satisfying (M,). The condition (M,) is also satisfied in
virtue of &;. As remarked earlier, the collection (U, ¢,),.4 can then be
extended to a collection (U,, ®,)qcq* Which satisfies (M), (M,), and
M;). This induces a differentiable structure on M and each g € § is
obviously a differentiable function. On the other hand, suppose that f
is a differentiable function on the constructed manifold. If p € M, there
exists a local chart (U, ¢,) where « € A* such that p € U, and such that
fo g;lis a differentiable function on an open neighborhood of ,(p).
Owing to (M) we may assume that « € 4. There exists a differentiable
function # on R™ such that fo ¢;}(x) = u(x,, ..., x,,) for all points
x = (%, ..., %,) in some open neighborhood of ¢,(p). This means (in
terms of the ¢; above) that

F=u(P, v Pm)

in some neighborhood of p. Since p € M is arbitrary we conclude from
% and §, that f € & Finally, let (¥, $3)s.p be another collection of
open charts satisfying (M,), (M,), and (M;) and giving rise to the same
§. Writing f o ¢7! = fo 3! o (5 0 ;1) for f € § we see that 3 0 @3l
is differentiable on <pa(U N Vy), so by the maximality (M), (Us, ) €
(Vs ¥5)pep and the uniqueness follows.

We shall often write C*(M) instead of § and will sometimes denote
by C=(p) the set of functions on M which are differentiable at p. The
set C°(M) is an algebra over R, the operations being

M) () = Af(p),
(f +8) () = F(p) + &(p),

(fe) (2) = f(p) &(p)
for Ae R, p c M, f, g € C°(M).

Lemma 1.2. Let C be'a compact subset of a manifold M and let V
be an open subset of M containing C. Then there exists a function y € C*(M)
which is identically 1 on C, identically O outside V.
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This lemma has already been established in the case M = R™. We
shall now show that the general case presents no additional difficulties.

Let (U, ¢,) be alocal chart on M and .S a compact subset of U.,.
There exists a differentiable function f on ¢ (U,) such that f is
identically 1 on ¢,(S) and has compact support contained in ¢ {U)).
The function F on M given by

Flg) = 1(‘) (9u9) ifge Uy

otherwise

is a differentiable function on M which is identically 1 on § and iden-
tically O outside U,. Since C is compact and ¥V open, there exist finitely
many coordinate neighborhoods Uy, ..., U, and compact sets S, ..., S,
such that

ccurs, ScU;
(U UyC V.

As shown previously, there exists a function F; € C*(M) which is
identically 1 on S; and identically O outside U,;. The function

$=1—(1—F)(1 —Fp)..(1 —F)

belongs to C*(M), is identically 1 on C and identically 0 outside V.

Let M be a C* manifold and (U,, ¢,),.4 2 collection satisfying (M,),
(M,), and (M,). If U is an open subset of M, U can be given a differen-
tiable structure by means of the open charts (V,, 4,),cq Where ¥V, =
U n U, and ¢, is the restriction of ¢, to V,. With this structure, U is
called an open submanifold of M. In particular, since M is locally con-
nected, each connected component of M is an open submanifold of M.

Let M and N be two manifolds of dimension m and 7, respectively.
Let (U,, @,)scq and (V, $i5)spbe collections of open charts on M and N,
respectively, such that the conditions (M,), (M,), and (Mj;) are satisfied,
For a € A4, B € B, let ¢, X ¢, denote the mapping (p, q) — (@(P).1¥s(q))
of the product set U, X ¥V, into R™**. Then the collection (U, X V5,
Py X Yp)seapen Of open charts on the product space M X N satisfies
(M,) and (M,) so by Remark 1, M X N can be turned into a manifold
the product of M and N. -

An immediate consequence of Lemma 1.2 is the following fact which
will often be used: Let ¥ be an open submanifold of M, f a function
in C*(V), and p a point in V. Then there exists a function f € C*(M)
and an open neighborhood N, p € N C V such that f and f agree on N.
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Definition. Let M be a topological space. A covering of M is a
collection of open subsets of M whose union if M. A covering {U}..,
of M is said to be locally finite if each p € M has a nelghborhood which
intersects only finitely many of the sets U,,.

Definition. A Hausdorf space M is called paracompact if for each
covering {U }sea of M there exists a locally finite covermg {Vs}gen Which
is a refinement of {U,},.4 (that is, each ¥V is contained in some [/ ).

Definition. A topological space is called normal if for any two disjoint
closed subsets 4 and B there exist dls_|01nt open subsets U and V such
that ACU, BC V.

It is known that a locally compact Hausdorf space which has a count-
able base is paracompact and every paracompact space is normal (see
e.g., Kelley [1]; the notion of paracompactness is due to J. Dieudonné).

Theorem 1.3 (partition of unity). Let M be a normal manifold and
{U,}uca a locally finite covering of M. Assume that each U, is compact.
Then there exists a system {p,}uca Of differentiable functions on M such
that

(i) Each @, has compact support contained in U,,.

(il) P > 01 EaeA Po = 1'

We shall make use of the following fact (see, e.g., Kelley [1], p. 171):

Let {U,},.4 be a locally finite covering of a normal space M. Then
each set U, can be shrunk to a set V,, such that 7, C U, and {V,},.4 is
still a covering of M.

To prove Theorem 1.3 we first shrink the U, as indicated and thus
get a new covering {V,},.4. Owing to Lemma 1.2 there exists a function
i, € C=(M) of compact support contained in U, such that i, is iden-
tically 1 on V, and ¢, = 0 on M. Owing to the local finiteness the sum
3 ca. = ¥ exists. Moreover, € C*(M) and y(p) > O for each p € M.
The functions ¢, = ¢,/¢y have the desired properties (i) and (ii).

The system {gp,},.4 is called a partition of unity subordinate to the

covering {U}, 4.

§ 2. Tensor Fields

1. Vector Fields and 1-Forms

Let A be an algebra over a field K. A derivation of A is a mapping
D: A— A4 such that »

(1) D(af + Bg) = aDf + BDg for o,feK, f,ged;

(i) D(fg) =f(Dg) +(Df)g  for fged



