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PREFACE

In the real world, an ecosystem is subjected to large perturbations of its
initial state and continual disturbances on its dynamics. Therefore it is impor-
tant to establish that an ecosystem model is stable relative to finite pertur-
bations of its initial state and its dynamics. One object of this book is to
demonstrate that Liapunov and Liapunov-like functions can be successfully
used to establish, in a nonlinear population model, stability relative to realistic
perturbations.

It is shown that a complex ecosystem is stable relative to realistic pertur-
bations if it is a collection of self-regulating species such that the sum total
of the stabilizing intraspecific interactions dominates the interspecific inter-
actions. A nontrivial criterion for a complex ecosystem mode! to have this
property is given. For a complex ecosystem model to satisfy this criterion, it
is desirable that it has many null interactions between pairs of species.

Another object of this book is to demonstrate the usefulness of optimal
control theory in the management of biological populations. Management
policies should always be implemented in a feedback manner. This would
reduce some of the adverse effects of uncertainties in an ecosystem in the
real world. After all, Nature itself uses feedback to cope with uncertainties
in many processes.

Chapter 2 contains a brief survey of static optimization techniques and .
optimal control theory for systems which are modelled by differential and
difference equations. Chapter 3 contains methods which use Liapunov and
Liapunov-like functions to establish that a given population model is stable
relative to finite perturbations of its initial state and that it is nonvulnerable
relative to large continual disturbances. These methods are applied to single
species and two-species populations which are modelled by differential and
difference equations. Fisheries provide some of the best examples of the use-
fulness of mathematics in the management of biological populations. A few
management problems in fisheries are examined in Chapter 4. They utilize
stability and optimal control theories. Chapter 5 considers stability in an
ecosystem model with complexities due to species richness, nonlinearities,
time delays and spatial heterogeneity. The very interesting and important
problem of pest management is considered in Chapter 6.

I have greatly benefited from discussions with T.T. Agnew, C.W. Clark,
M.E. Fisher, G.W. Harrison, A. Hastings, C.S. Hsu, L.S. Jennings, G. Leitmann,
D. Ludwig, T.L. Vincent and C.J. Walters. Many of the results in this book
were obtained in collaboration with Tom Vincent. This book was completed
during my sabbatical leave which was supported by NRC grant No. 3990.

I thank Colin Cl2rk and members of the Mathematics Department of the
University of British Columbia for their hospitality.
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Chapter 1

INTRODUCTION

1.1. MODELS IN ECOLOGY

As in other areas of science and enginéering, there exists a wide spectrum
of models in ecology. At one end of the spectrum are relatively simple but
general models which are used to analyse theoretical questions in ecology.
These models are called strategic models by theoretical ecologists. At the
other end of the spectrum are detailed computer simulation models; theoretical
ecologists call these tactical models. However, some system analysts prefer to
refer to simulation models as realistic models. Disclosed in this difference in
terminology is the difference in the emphasis that each group places on the models.

It is desirable to have a wide range of models in order to.achieve different
purposes. For example, consider the flight of a plane between two cities. For
the average passenger on the plane, it would be adequate to model the flight
of the plane by a particle moving at a constant speed in a straight line over a

‘flat earth from one city to another. The pilot, however, needs a cluster of
models which includes strategic models of the dynamics of the plane, and
relatively detailed models of the control systems which operate the wings
and tail of the plane, the engines, the wheels, the brakes and other subsystems.
The pilot’s understanding of these models, which are not necessarily specified
in explicit mathematical terms, is obtained from introductory courses on
aerodynamics and experiences on simulators and planes. Finally, the team

of engineers who design the plane requires a deep understanding of the
detailed (tactical) models of the aerodynamics of the plane, the engines, the
control systems and other subsystems. This understanding of the behavior
of the detailed conceptual and mathematical models is obtained from math-
ematical analyses, simulations on computers, simulations of physical models
of the plane in wind tunnels and test flights of the prototype plane.

In the field of ecology, a broad range of models serves different objectives.
Strategic models are needed for isolating theoretical questions and studying
them one at a time. They also serve as a means of communicating with
colleagues, students of ecology and scientists in other fields, in a precise
and objective manner the latest advances achieved in the understandmg of
the dynamical behavior 'of ecosystems.



On the other hand, tactical models are required for formulating the appro-
priate control policies in the management, of a particular renewable resource
or a specific pest population. In this case, only the user of the model needs
to have a good understanding of the behavior of the model. The solution of
these applied problems is very important in order to maintain strong support
for ecological studies. Moreover, simulation models pose many interesting
and pertinent questions for the theoretical ecologist to study.

The analyses of strategic models of an ecosystem may provide useful guide-
lines in the construction of a detailed simulation model. They can also pro-
vide suggestions on how to exercise a computer model of a community. For
instance, the analysis of a simplified pest—predator system suggests that in the
control of pest.population, it is sometimes desirable to release pests. Without
this result from the simplified model, it would sound absurd to consider the
release of pests in a simulation model for managing a pest population. Ideally
we should use a combination of strategic and tactical models in studying
ecological problems.

1.2. STABILITY CONCEPTS IN ECOLOGY

The word “stability” is used for various purposes in ecology. It is used to
describe a lack of change in population levels or population parameters; and
to describe the persistence of an ecosystem. In mathematics there are many
distinctly different concepts of stability (Kalman and Bertram, 1960 a;
Willems, 1970). Recently, several authors (Lewontin, 1969; Holling, 1973;
May, 1974; Maynard Smith, 1974; Goh, 1975) have attempted to reconcile
the various concepts of stability which are used in ecology and mathematics.

Each concept of stability in ecclogy could be made more precise by apply-
ing it to a mathematical model of an ecosystem. For a precise definition.of a
concept of stability it is necessary to specify explicitly: (i) the class of admis-
sible perturbations; (ii) the set of admissible initial states;'(iii) a set of system
responses which characterize desirable or undesirable behavior; and (iv) a
time interval. Usually the infinite time horizon (0, =) is used. Each set of
specifications of these components of stability leads to a particular concept
of stability. ’

Four types of perturbations on an ecosystem model are: (i) impulsive and
infrequent perturbations of the initial states; (ii) continual disturbances on
the system dynamics; (iii) impulsive and infrequent changes in the system
parameters; and (iv) slow and continual changes in the system parameters.
The effects of types (i) and (iii) perturbations can be examined together; and
those of types (ii) and (iv) can be studied together.

The most common method of studying stability in an ecosystem model is
by an examination of the eigenvalues of a matrix at an equilibrium. This
method establishes stability only relative to small perfurbations of the initial
state. Hence it is called local stability. It implies that if the initial state is



displaced a small distance from an equilibrium and the system is thereafter
left aloné, then the natural dynamics will drive the state into a decreasing
neighbourhood of the equilibrium. Clearly an eigenvalue analysis is only a small
initial step in understanding the dynamical behavior of an ecosystem model.

In the real world ecosystems are subjected to large perturbations of the
initial state and system dynamics. The most powerful analytical method for
studying stability relative to finite perturbations of the initial state of an
ecosystem model is the direct method of Liapunov. This method was dis-
covered in 1892 by the Russian mathematician A.M. Liapunov (see Liapunov,
1966). But the method was ignored by mathematicians for a long time. In
the West, it was not till the nineteen-fifties that it became a popular tool for
the analysis of nonlinear systems.

The direct method of Liapunov requires the construction of certain
functions called Liapunov functions. For physiéal systems the direct method
of Liapunov generalizes the principle that a system, which continuously
dissipates energy until it attains an equilibrium, is stable.

The population of each species in a spatially homogenous and well mixed
ecosystem must be nonnegative. This requires that the concept of global
stability for engineering systems must be modified in ecological models. By
definition an ecosystem model is globally stable if every trajectory of the
model which begins at a positive state remains in the positive orthant for all
finite values of the time variable t, and converges to a positive equilibrium as
t > o, The fact that the density of a viable population in a spatially homo-
geneous ecosystem must be positive requires that a two-sided energy principle
should be used for constructing Liapunov functions for this class of models
(Goh, 1977 a). A viable spatially homogeneous single-species population must
have net energy absorption when its population level is low; and it must have
net energy dissipation when its population level is high. In a spatially homo-
genous ecosystem the population of each species at extreme densities should
have the behavior of a viable single species population.

In an ecosystem model, let S(0) be a set of desirable initial states, Z(T') be
4 set of undesirable initial states, U be a set of admissible disturbances, and
[0, T] be a given time interval. By definition, the ecosystem model is non-
vulnerable relative to the sets S(0), Z(T) and U during the time interval
[0, T, if there is no admissible disturbance which drives the system from a
state in S(0) to the set Z(T) during the time interval [0, T]. Liapunov-like -
functions can be used in an effective manner to study nonvulnerability in the
class of generalized Lotka—Volterra models, and in a class of nonlinear
models.

1.3. ECOLOGICAL ENGINEERING

Ecological engineering problems may be divided into two classes, namely,
design problems and control problems. The question as to whether or not it
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is desirable to import and introduce a species into an ecosystem is a design
problem. On the other hand the formulation of spraying programs for apply-
ing an insecticide in the management of a pest is a control problem.

To obtain good and reliable solutions to a design problem, it is necessary
to have a relatively accurate model (mathematical or conceptual) of the eco-
system which is being manipulated or created. A reason for this stringent _
requirement is that it may not be possible to reverse the effects of a decision
in a design problem.

In a control problem, there are usually some variables or parameters that
can be easily manipulated between certain bounds. These variables may be
used in a control program in two ways: (i) in an open-loop manner, e.g. the
harvesting of a population under a constani quota (yield) policy; and (ii) in a
feedback (closed-loop) manner, e.g. the harvesting of a population using a
fixed effort policy. In the second example, the rate of harvesting is proportional
to the product of the applied effort and the population. It is interesting to
note that in this example, the state of the system need not be monitored at
all, the reason being that the feedback nature of the impact of the control
variable on the population dynamics is built-in.

Let x denote the state vector (x,, x,, ..., x,,) of a system, and u denote
the control vector (u,, u,, ..., u,, ). By definition, each function u(x) deter-
mines a control policy. A feedback control policy u(x) is usually determined
from an analysis of a deterministic model of the system. In feedback control
we must specify a target to which the state of the system must be driven.
The target could be a point or a region in the state space. A control policy
must be able to drive the system from every admissible (operating) initial *
state to the target. If otherwise, the system is not fully controllable.

The way in which a feedback control policy is implemented is very impor-
tant. In feedback control the state of the system is continuously monitored,
and the control variables are adjusted according to a prescribed control policy
u(x). It is the updating of the control variables which enables a feedback
control system to neutralize some of the adverse effects of uncertainties.

In practice the state of the system is sampled only at discrete times
t,t+ At,t+ 24At,... and the control variables are adjusted accordingly. The
effectiyeness of feedback control to neutralize the adverse effects of a given
class of uncertainties decreases as At increases. It is usually very difficult to
make good estimates of the population levels in an ecosystem. In many
cases the interactions between species are not well understood. In spite of
these d‘ifﬁculties, management control policies should always be impiemented
in a feedback manner using the best estimates of the state of the system. A
management policy which is not in a feedback form is an improperly designed
policy. ,

Walters and Hilborn (1978) have sug-ested that generally stochastic
optimal control policies which take into account random disturbances on the
system dynamics and random observation errors are similar to feedback
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control policies which are formulated using deterministic models. This prob-
lem on the relative merits of using a stochastic optimal control policy and a
feedback optimal control based on a deterministic model of a system is very
important in the management of ecosystems. For the general linear regulatox
problem, Fleming and Rishel (1975, p.166) have rigorously proved that the
optimal feedback control law is the same for the stochastic model as for the
deterministic model. For nonlinear problems this question requires further
studies (Reed, 1974; Walters, 1975; Walters and Hilbom, 1976).

. 1t is possible to design an efficient feedback control policy using only a
crude model of a system if we have available an independent control variable
for each state equation. In this case the control variables can be used to
enhance the desirable trends in the dynamics of a system and drive it io a
prescribed target. This will be demonstrated in Section 6.3.

1.4. LIAPUNOV FUNCTIONS

We shall discuss briefly the properties of a Liapunov function and a
general method for constructing Liapunov functions. The applications of
Liapunov functions are considered in subsequent chapters.

Let us consider the properties of a Liapunov function for a model ia
which there are no sign restrictions on the state variables. Suppose the system

X =fi(xy, %9 0 X)), i=1.2,...,m 1.4.1)
has an equilibrium at x = (0, 0, ..., 0). We have
f(0)=0, i=1,2,...,m. (1.4.2)

Let |lx|| be a norm of x. For example,
flxll = min {124, %20, ..., 1%510, (1.4.3)

where !x,] denotes the absolute value of x,. Let r = |ix||. Let G(r) be a strictly
increasing function of r such that G(0) = 0, and G(r)> as r >, By defi-
nition, a continuocus scalar function V(x) is radially unbounded if there exists
a G function with the above properties such that

Vix) =2 G(ilxl) (1.4.4)

for all x in the state space R™ = {x|(x},%2, ..., Xm )},

Let R be an open region of the state space. Let V(x) be a continuously
differentiable scalar function in R. By definition V(x) is a Liapunov function
of model (1.4.1) if it has the following properties:

(i) V(0) = 0; (1.4.5;
(ii) V(x) is radially unbounded; (1.4.6)

and
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) V@ =3 2 fe)<o foralxeR. (1.4.7)
i=1 "t

Condition (i) is trivial. It can be replaced by the condition, V(0) = a, where a
is a positive or a negative constant. Condition (ii} can be weakened consider-
ably. For example, LaSalle (1976, p.30) uses a definition of a Liapunov
function which only requires that V(x) is a continuous function and that it
satisfies condition (iii). However, if condition (ii) is weakened it is necessary
to give additional conditions which ensure that every solution of (1.4.1) which
begins in a given closed bounded subset of R remains in it for all positive
values of ¢. This requirement will be demonstrated in Example 1.4.1. Condition
(ii) ensures that the equations, Vix)=K,,K, <K, <Ky<-:--, represent a
set of nested closed hypersurfaces (Hahn, 197 6, p.99). Condition (iii) can be
weakened to handle the case when V(x) is not continuously differentiable,
and when f(x) is not a continuous vector function (LaSalle, 1976, p.29).

For population models, the V(x) function is often a separable function.
This means that

Vix)=c,Vi(x,) + e;Vy(xy) + -+ CmVm(xy) ) (1.4.8)

where ¢y, ¢, ..., c,, are positive constants. In this case V(x) is radially
unbounded if, fori=1,2,..., m, dV;/dx; < G for all x; € (--o, 0), dV;/dx;
> 0 for all x; € (0,0), and V(x;) > as | x;| > . This property of a separable
function can be established by using the norm given in (1.4.3).

Example 1.4.1. The following counter-example was constructed by Barbashin

and Krasovskii (1952) (see also Hahn, 1967 , p.109) to demonstrate that a

Liapunov funection for global asymptotic stability must be radially unbounded.
Letu=1+ x? and

X =—6x/u® + 2y,

¥ =—2(x + y)/u?. (1.4.9)
Consider the function
Vix,y) = (xu) + y?. ‘ (1.4.10)

We have V(x,0)~> 1 asx = . Hence for K > 1, the equation V(x, y)=K
does not define a closed surface. It follows that V(x, y) is not radially
unbounded.

Computing V along solutions (1:4.9) we get

V=—4(3x* +y2u?)/u®, (1.4.11)

Clearly V(x, ¥)< 0 forall (x,y) # (0, 0). But we shall show that (0, 0) is
not globally asymptotically stable.
The hyperbola
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y=2/(x—+2), x>V2, (1.4.12)

is a barrier to the trajectories of (1.4.9) which begin in the set {(x, y) | x-
>V2,y> 2/(x —+/2)}. This is established by comparing the slope of the
hyperbola of (1.4.12) and the slopes of the trajectones ‘of (1.4.8). The slope
of the hyperbola is

p=dy/dx = ~2/(+/2 —x)? (1.4.13)

The slope of the trajectory of (1.4.9) which passes through the same point
on the hyperbola is

q =y/x =—=1/(1+ 2V/2x + 2x%). (1.4.14)

Eqgs. (1.4.13) and (1.4.14) imply that g > p for all points on the hyperbola
given in (1.4.12). Hence the solutions of (1.4.9) which begin in the set .
{(x, ) x>+2,y > 2/(x —+/2)} do not intersect the hyperbola in (1.4.12),
i.e. they do not converge to (0, 0) as t > «. Therefore (0, 0) is not globally
asymptotically stable.

The next theorem gives a simple set of conditions for global stability.

Theorem 1.4.1. The equilibrium x = 0 of (1.4.1) is globally asymptotically
stable if there exists a Liapunov function in R™ such that

V(x)<0 (1.4.15)
forallx € R™ and x # 0.

Proof. Let the solution of (1.4.1) which begins at the point x(0) = a converge
. to the point x(=) = b # 0. It follows that V(b) = L where L is a positive
constant.

The region A = {x | L < V(x) < V(a)} is a closed bounded region. The
function V(x) is a continuous function. It follows that the minimum of V(x)
forall x € A exists. Let this be —M. The equations, V(x) = K,,K,,< K, <Ky
< ---, represent a set of nested closed hypersurfaces. The conditions, V< 0
and I'm V[x(t)] = V(b) as t > o, imply that x(¢) remains in A forall ¢t > 0.
Along the solution which begins at x(0) = a, we have

VIx(t)] — V[x(0)] = f' Vdt< f«M dt = —Mt. (1.4.16)
o o

It follows that V[x(t)] - —eo. As this is impossible, we conclude that the equi-
librium x = 0 is globally asymptotically stable.
We shall now consider the modifications which are necessary before a
Liapunov function, as defined above, can be applied to a population model.
Suppose a model of a spatially homogenous community is
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M=NiFi(N1,N2,--~va)s i=1,2,...,m (1.4.17)

where N; is the population of the ith species. In this model the state variables
must be nonnegative. For all the species to persist it is necessary for model
(1.4.17) to have a posjtive equilibrium or a limit cycle. It is also necessary
for all the species to be present initially. Thus a natural concept of global
stability for a positive equilibrium of (1.4.17) at N* is that every solution of
the model which begins in the positive orthant R7?={N|N;>0,i=1,2,
..., m} must remain in R for all finite values of ¢ and converge to N* as
t—>oo,

We can establish that N* is globally stable by transforming the positive

orthant R} into R™ = {x | (x,, X2y ooy Xy )‘}, and then using Theorem 1.4.1.
For example, we could employ the transformation
% =In(N;/NY), i=1,2,..., m. (1.4.18)

However, this preliminary transformation is unnecessary. It may also be.
undesirable because the transformed model could be more complex.

The alternative and better approach is to translate the stability conditions
so that they can be used directly for establishing global stability in the posi-
tive orthant, This is achieved by translating condition (ii) of (1.4.6) into an
appropriate condition.

Using (1.4.18) we deduce that ascalar function V(N)is “radially unbounded”
in RY, if the function

W(x)=V(N{ expx,, N} expx,, ... N expx,,) (1.4.19)

is radially unbounded in R™ . This implies that the equations, V(N)=K,,
K, <K,<K;<:--,represent a set of nested closed hypersurfaces, and that
V(N)— o as N; > oo and as N; > 0+ fori=1,2, ... , m.

In brief, a continuously differentiable function V{N) is a Liapunov function
of (1.4.17) in R™ if 1t has the following properties:

(i) V(N*)=0; (1.4.20)

(ii) The equations, VIN) =K, , K, <K, < K; < --- | represent a set of nested
closed hypersurfaces, and V(N) > > as N; > o and asN;, > 0+ fori=1, 2,
...,m;and

(iit) V(N) =3 %N‘.F‘.(N) <0 foralNeR™ (1.4.21)
i=1 7

Theorem 1.4.2. The positive equilibrium of model (1.4.1 7) at N* is globally
stable in the positive orthan t, if there exists a Liapunov function V(N) in
RY, and .

m
vw=3 Y npay<o for all N € R and N # N*. (1.4.22)



The proof of this theorem follows directly from that for Theorem 1.4.1,
and the use of the properties of the Liapunov function V(N) in the positive
orthant R. ' . :

Example 1.4.2. The function

V(N) = (In N)? ' (1.4.23)
is a Liapunov function for the logistic model
' N=N(1-—N). , (1.4.24)

It can be used to establish that N = 1 is globally stable.

The function (In N)? is none other than x? under the transformation in
(1.4.18). Clearly the change of variables given in (1.4.18) may be used to
convert a Liapunov function of model (1.4.1) into a Liapunov function for
model (1.4.17).

But for establishing global stability in the positive orthant, the quadratic
function

V(N)=(N—N*)T P(IN—N") . (1.4.25)

where P is a positive definite matrix, is not a Liapunov function according to
the above definition. This is because V(N) does not tend to infinity as

N,- 0+ fori=1,2,...,m. Hence it cannot be used with Theorem 1.4.2 to
establish global stability in the positive orthant without using additional
conditions. This is a common shortcoming in proofs of global stability of a
competitive equilibrium in economics (Arrow et al., 1959; Quirk and Saposnik,
1968; Arrow and Hahn, 1971; Takayama, 1974).

There is a large amount of literature on the construction of Liapunov
functions (Schultz, 1965; Hahn, 1967 ; Gurel and Lapidus, 1968, 1969;
Willems, 1970; Gilpin, 1974; Gatto and Rinaldi, 1977; Goh, 1977 a; Hsu,
1678 a; Harrison, 1979 b). However, most of the Liapunov functions that
have been used successfully in the analyses of biological populations can be
generated by the variable gradient method.

In the variable gradient method, we guess the gradient of V(N) instead of
the function V(N). We choose a set of continuous functions, G,(N), G,(N),
..., G, (N), such that

3G, 3G,
ajvj_aNi, 1’1—172’;--1m (1426)

for all N € R7, and such that the function

Ny

VIN)= 3 | GiN, Nz, ...l ., Nu) dS;, (1.4.27)
i=1 Nit

is a Liapunov function for (1.4.17). In other words, the set of functions
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{G:i(N)} are chosen so that they satisfy the conditions: (i) the integrability
conditions in (1.4.26); (ii) the function V(N)in (1.4.27)is “radially unbounded”’
in R ; and (iii)

VIN)= 5 GN)N,F, (N)<0 forallNe R™. " (1.4.28)
i=1

Example 1.4.3. Let ¢,, €2, ...,Cn be aset of positive constants, and G;
=¢;(S; —N})/S; fori=1,2, ... , m. Clearly condition (1.4.26) is satisfied.
Using (1.4.27) we get

VIN) = 2 c[N; =N/ — N} In(N,/N?)] . (1.4.29)

i=1

This is a separable function, and V(N)-> > as N;> 0+ and as N; - o for
i=1,2,...,m.Itis “radially unbounded” in R}

If the constants ¢y, c,, ... » Cm are chosen so that
. m
VIN)= 3 ¢;(N; —N})F(N)< 0 : . (1.4.30)

i=1
forall Ne R}, then V(N) is a Liapunov function for (1.4.17).
Example 1.4.4, The following general prey—predator model was considered
by Harrison (1979 b): -
X =b(X)— f(X)a(Y),
Y = gX)h(Y) + d(Y). (1.4.31)

We assume that it has a positive equilibrium at (X*, r".
Consider the function

X - * Y _ *
V(X,Y)= J’ g(X)f(Tf(X)dx+ J’ %d{ (1.4.32)
x* Y*

Let the equilibrium (X*, Y*) belong to an open region R. Suppose V(X, Y)

> Oforall (X, Y)€ Rand (X, Y) # (X*, Y™). We can show that the equations

VX,Y)= K,, K, <K, <K;<--- » represent a set of nested closed hyper-

surfaces in a subregion of R. -
Computing V(X, Y) along the solutions of (1.4.31), we get

V= [g(X) — g(X*)) [bX)/AX) — b(X*)/F(X*)) S
+ 1a(Y) —a(Y*)] [df V)/R(Y) — d(Y*)/n(¥*)]. (1.4.33)
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Hence V(X, Y) is a Liapunov function in a neighbourhood of (X*, Y*) if:
(i) V(X,Y)> 0 forall (X,Y)ERand (X, Y) # (X*, Y*); and (ii)-V(X, Y)
< 0 for all (X, Y) € R. For a function to be a Liapunov function in a finite
neighbourhood of an equilibrium, it need not be radially unbounded.

Hsu (1978 a) and Harrison (1979 b) have shown that the Liapunov function
(1.4.32) can be used to establish stability in a wide range of prey—predator
models.

1.5. DIFFERENTIAL EQUATIONS AND DIFFERENCE EQUATIONS
IN ECOSYSTEM MODELLING

The application of nonlinear difference equations in ecosystem modelling
is becoming popular. One reason for this is that nonlinear difference equations
can be solved directly on a digital computer. However, in theoretical ecology
a difference equation model is often constructed initially, and a limiting pro-
cess is used to convert it into a differential equation model. Since it is usually
impossible to solve analytically a system of nonlinear differential equations,
it is solved on a digital computer. In doing so, it is reconverted into a system
of difference equations. Depending on the numerical algorithm for solving
differential equations, the resulting system of difference equations may not
be the same as in the initial model. i

This process is unnecessary. Moreover, sometimes incorrect conclusions
are obtained when a difference equation is converted into a differential
equation. An example of this occurs in the modelling of the adult population
of a single-species population with nonoverlapping generations whose dynamics
has a two-point limit cycle. The analogous differential equation would not
have an oscillatory behavior. Thus it may be more natural to use difference
equations to model ecosystems (Van der Vaart, 1973; Innis, 1974 a). ~

The present extensive use of differential equations in theoretical ecology
may be attributed to the fact that analytical methods for studying them are
better developed and are more widely taught than those for difference
equations. For instance, optimal control theory for systems of differential
equations is better developed than that for difference equations. Moreover
differential equation models of two species interactions can be analysed
graphically. :

For the management of a population with a discrete time delay, there is
good reason to use a difference equation model rather than a delay-differential
equation model. This is because the optimal control of a delay difference
equation produces no more difficulties than that of a model without a delay.
In contrast, the optimal control of a delay-differential equation generally
leads to considerable mathematical difficulties. _

- There are two other interesting differences between a differential equation
model. It may be difficult to establish the existence of a solution to a non-
linear differential equation during a long period of time. On the other hand,

.



