WILEY-VCH

Peer Kirsch

Modern Fluoroorganic Chemistry

Synthesis, Reactivity, Applications

Second, Completely Revised and Enlarged Edition

Peer Kirsch

Modern Fluoroorganic Chemistry

Synthesis, Reactivity, Applications

Second, Completely Revised and Enlarged Edition

WILEY-VCH Verlag GmbH & Co. KGaA

The Author

Prof. Dr. Peer Kirsch

Merck KGaA Liquid Crystals R&D Chemistry Frankfurter Str. 250 64293 Darmstadt Germany All books published by Wiley-VCH are carefully produced. Nevertheless, authors, editors, and publisher do not warrant the information contained in these books, including this book, to be free of errors. Readers are advised to keep in mind that statements, data, illustrations, procedural details or other items may inadvertently be inaccurate.

Library of Congress Card No .: applied for

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

Bibliographic information published by the Deutsche Nationalbibliothek

The Deutsche Nationalbibliothek lists this publication in the Deutsche Nationalbibliografie; detailed bibliographic data are available on the Internet at <http://dnb.d-nb.de>.

© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Boschstr. 12, 69469 Weinheim, Germany

All rights reserved (including those of translation into other languages). No part of this book may be reproduced in any form – by photoprinting, microfilm, or any other means – nor transmitted or translated into a machine language without written permission from the publishers. Registered names, trademarks, etc. used in this book, even when not specifically marked as such, are not to be considered unprotected by law.

Print ISBN: 978-3-527-33166-6 ePDF ISBN: 978-3-527-65138-2 ePub ISBN: 978-3-527-65137-5 mobi ISBN: 978-3-527-65136-8 oBook ISBN: 978-3-527-65135-1

Cover Design Grafik-Design Schulz, Fußgönheim Typesetting Laserwords Private Limited, Chennai, India Printing and Binding Markono Print Media Pte Ltd, Singapore

Printed in Singapore Printed on acid-free paper

Peer Kirsch

Modern Fluoroorganic Chemistry

Related Titles

Wirth, T. (ed.)

Organoselenium Chemistry Synthesis and Reactions

2012 ISBN: 978-3-527-32944-1

Petrov, V. A.

Fluorinated Heterocyclic Compounds Synthesis, Chemistry, and Applications

2009 ISBN: 978-0-470-45211-0 Ojima, I. (ed.)

Fluorine in Medicinal Chemistry and Chemical Biology

2009 ISBN: 978-1-4051-6720-8

Mohr, F. (ed.)

Gold Chemistry Applications and Future Directions in the Life Sciences

2009 ISBN: 978-3-527-32086-8 To Annette and Alexander

"The fury of the chemical world is the element fluorine. It exists peacefully in the company with calcium in fluorspar and also in a few other compounds; but when isolated, as it recently has been, it is a rabid gas that nothing can resist."

Scientific American, April 1888.

×

"Fluorine leaves nobody indifferent; it inflames emotions be that affections or aversions. As a substituent, it is rarely boring, always good for a surprise, but often completely unpredictable."

M. Schlosser, Angew. Chem. Int. Ed. 1998, 37, 1496-1513.

Preface to the Second Edition

Within the few years since the first edition, the landscape of fluorine chemistry has changed dramatically: it is no longer the domain of a highly specialized (and often quite courageous) community, but the field has attracted the attention of mainstream organic and bioorganic chemists. The value of fluorine substitution in bioactive compounds and other functional materials has been widely recognized beyond the boundaries of the traditional fluorine chemistry community. Consequently, the variety of available synthetic methodology has exploded. A review with a reasonable degree of completeness has become impossible, and even the selection of the most significant developments is a very difficult task.

The scope of this book is not to offer a complete review of available methods, but to provide an introduction and a representative overview over the rapidly evolving field for the interested newcomer. It should be used as an entry point for a detailed in-depth study, but it is not intended as a stand-alone encyclopedia of fluorine chemistry. Therefore, there are many omissions, and the selection of the most interesting new developments has often been a matter of taste of the author.

The focus of the second edition is application fields where fluorine is essential for function, and also the chemistry needed to access such compounds. This applies not only to the material sciences but of course also to the biomedical field. On the synthetic side, the most remarkable new development is a huge variety of transition metal-catalyzed methods for the introduction of fluorine and fluorinated groups.

From the conceptual side, the author's choice of the most important new developments has been covered. From the application side, two new areas have been added: fluorinated dyes as one of the first areas of the industrial application of fluorine chemistry was recognized as a gap in the previous edition. In the last 10 years, the field of organic electronics has developed tremendously, and also here fluorine chemistry has found a very specific range of applications. A short review of the role and function of fluorine chemistry in this rapidly developing field has been added.

The author would like to thank the friends and colleagues who have provided their help and valuable input during the update of the text. In particular,

XIV Preface to the Second Edition

Matthias Bremer, Alois Haas, Ingo Krossing, David O'Hagan, Gerd Röschenthaler, Georg Schulz, Peter and Marina Wanczek, John Welch, and Yurii Yagupolskii supported my project with information and critical discussions. From Wiley-VCH, Anne Brennführer and Lesley Belfit provided me with steady support and encouragement. Most of all, I owe my gratitude to my wife Annette and my son Alexander, who received much less attention than they deserved and who provided an environment where I could make the time for writing a book on top of many other things.

Seeheim-Jugenheim January 2013 Peer Kirsch

Preface to the First Edition

The field of fluoroorganic chemistry has grown tremendously in recent years, and fluorochemicals have permeated nearly every aspect of our daily lives. This book is aimed at the synthetic chemist who wants to gain a deeper understanding of the fascinating implications of including the highly unusual element fluorine in organic compounds.

The idea behind this book was to introduce the reader to a wide range of synthetic methodology, based on the mechanistic background and the unique chemical and physicochemical properties of fluoroorganic compounds. There are quite some barriers to entering the field of preparative fluoroorganic chemistry, many based on unfounded prejudice. To reduce the threshold to practical engagement in fluoroorganic chemistry, I include some representative synthetic procedures which can be performed with relatively standard laboratory equipment.

To point out what can be achieved by introducing fluorine into organic molecules, a whole section of this book is dedicated to selected applications. Naturally, because of the extremely wide range of sometime highly specialized applications, this part had to be limited to examples which have gained particular importance in recent years. Of course, this selection is influenced strongly by the particular "taste" of the author.

I could not have completed this book without help and support from friends and colleagues. I would like to thank my colleagues at Merck KGaA, in particular Detlef Pauluth for his continuous support of my book project, and Matthias Bremer and Oliver Heppert for proof reading and for many good suggestions and ideas how to improve the book. The remaining errors are entirely my fault. G. K. Surya Prakash, Karl O. Christe, and David O'Hagan not only gave valuable advice but also provided me with literature. Gerd-Volker Röschenthaler, Günter Haufe, and Max Lieb introduced me to the fascinating field of fluorine chemistry. Andrew E. Feiring and Barbara Hall helped me to obtain historical photographs. Elke Maase from Wiley-VCH accompanied my work with continuous support and encouragement.

XV

XVI Preface to the First Edition

In the last 18 months I have spent most of my free time working on this book and not with my family. I would, therefore, like to dedicate this book to my wife Annette and my son Alexander.

Darmstadt May 2004 Peer Kirsch

Abbreviations

acac	Acetylacetonate ligand
aHF	Anhydrous hydrofluoric acid
AIBN	Azobis(isobutyronitrile)
AM	Active matrix
ASV	"Advanced super-V"
ATPH	Aluminum tri[2,6-bis(<i>tert</i> -butyl)phenoxide]
BAST	N,N-Bis(methoxyethyl)amino sulfur trifluoride
BINOL	1,1'-Bi-2-naphthol
Boc	tert-Butoxycarbonyl protecting group
Bop-Cl	Bis(2-oxo-3-oxazolidinyl)phosphinic chloride
BSSE	Basis set superposition error
BTF	Benzotrifluoride
CFC	Chlorofluorocarbon
COD	Cyclooctadiene
CSA	Camphorsulfonic acid
Cso	Camphorsulfonyl protecting group
CVD	Chemical vapor deposition
cVHP	Chicken villin headpiece subdomain
DABCO	Diazabicyclooctane
DAM	Di(p-anisyl)methyl protecting group
DAST	N,N-Diethylamino sulfur trifluoride
DBH	1,3-Dibromo-5,5-dimethylhydantoin
DBPO	Dibenzoyl peroxide
DEAD	Diethyl azodicarboxylate
DCC	Dicyclohexylcarbodiimide
DCEH	Dicarboxyethoxyhydrazine
DEC	N,N-Diethylcarbamoyl protecting group
DFI	2,2-Difluoro-1,3-dimethylimidazolidine
DFT	Density functional theory
DIP-Cl	β-Chlorodiisopinocampheylborane
DMAc	N,N-Dimethylacetamide
DMAP	4-(N,N-Dimethylamino)pyridine
DME	1,2-Dimethoxyethane
DMF	N,N-Dimethylformamide
DMS	Dimethyl sulfide
DMSO	Dimethyl sulfoxide
DSM	Dynamic scattering mode

xviii	Abbreviations	
	DTBP dTMP dUMP	Di <i>-tert-</i> butyl peroxide Deoxythymidine monophosphate Deoxyuridine monophosphate
	ECF ED EPSP ETFE	Electrochemical fluorination Effective dose 5-Enolpyruvylshikimate-3-phosphate Poly(ethylene- <i>co</i> -tetrafluoroethylene)
	FAR FDA FDG FET FFS FITS FRPSG FSPE F-TEDA	 α-Fluorinated alkylamine reagents Fluorodeoxyadenosine Fluorodeoxyglucose Field effect transistor Fringe field switching Perfluoroalkyl phenyl iodonium trifluoromethylsulfonate reagents Fluorous reversed-phase silica gel Fluorous solid-phase extraction N-Fluoro-N'-chloromethyldiazoniabicyclooctane reagents
	GWP	Global warming potential
	HFCF HFC HFP HMG ⁺ HMPA HSAB	Hydrofluorocarbon Hydrofluorocarbon Hexafluoropropene Hexamethylguanidinium cation Hexamethylphosphoric acid triamide Hard and soft acids and bases (Pearson concept)
	IPS ITO	In-plane switching Indium tin oxide
	LC	1. Liquid crystal
	LCD LD LDA	2. Lethal concentration Liquid crystal display Lethal dose Lithium diisopropylamide
	MCPBA MEM MOM MOST MVA	<i>m</i> -Chloroperbenzoic acid Methoxyethoxymethyl protecting group Methoxymethyl protecting group Morpholino sulfur trifluoride Multi-domain vertical alignment
	NAD ⁺ /NADH NADP ⁺ /NADPH NBS NCS NE NFPy NFTh NIS NLO NMP NPSP	Nicotinamide adenine dinucleotide, oxidized/reduced form Nicotinamide adenine dinucleotide phosphate, oxidized/reduced form <i>N</i> -Bromosuccinimide <i>N</i> -Chlorosuccinimide Norepinephrine <i>N</i> -Fluoropyridinium tetrafluoroborate <i>N</i> -Fluoro- <i>o</i> -benzenedisulfonimide <i>N</i> -Iodosuccinimide Nonlinear optics <i>N</i> -Methylpyrrolidone <i>N</i> -Phenylselenylphthalimide

OD	Ornithine decarboxylase
ODP	Ozone-depleting potential
OFET	Organic field effect transistor
OLED	Organic light-emitting diode
OPV	Organic photovoltaics
OTFT	Organic thin-film transistor
PCH PCTFE PDA PET	Phenylcyclohexane Polychlorotrifluoroethylene Personal digital assistant 1. Positron emission tomography 2. Poly(ethylene terephthlate)
PFA	Perfluoropolyether
PFC	Perfluorocarbon
PFMC	Perfluoro(methylcyclohexane)
PFOA	Perfluorooctanoic acid
PFOB	Perfluoro- <i>n</i> -octyl bromide
PFOS	Perfluorooctylsulfonic acid
phen	Phenanthroline
PI	Polyimide
PIDA	Phenyliodonium diacetate
pip ⁺	1,1,2,2,6,6-Hexamethylpiperidinium cation
PLP	Pyridoxal phosphate
PNP	Purine nucleoside phosphorylase
PPVE	Poly(heptafluoropropyl trifluorovinyl ether)
PTC	Phase transfer catalysis
PTFE	Polytetrafluoroethylene (Teflon TM)
PVDF	Poly(vinylidene difluoride)
PVPHF	Poly(vinylpyridine) hydrofluoride
P3DT	Poly(3-dodecylthiophene)
QM/MM	Quantum mechanics/molecular mechanics
QSAR	Quantitative structure-activity relationships
SAH SAM	S-Adenosylhomocysteine hydrolase 1. S-Adenosylmethionine 2. Self-assembled monolayer
SBAH	Sodium bis(methoxyethoxy)aluminum hydride
scCO ₂	Supercritical carbon dioxide
SFC	Supercritical fluid chromatography
SET	Single electrton transfer
SFM	Superfluorinated material
SPE	Solid-phase extraction
STN	Super-twisted nematic
TADDOL TAS ⁺ TASF TBAF TBDMS TBS	$\begin{array}{l} \alpha,\alpha,\alpha',\alpha'\text{-}Tetraaryl\text{-}2,2\text{-}dimethyl\text{-}1,3\text{-}dioxolane\text{-}4,5\text{-}dimethanol\\ Tris(dimethylamino)sulfonium cation\\ Tris(dimethylamino)sulfonium difluorotrimethylsiliconate, (Me_2N)_3S^+\\ Me_3SiF_2^{-}\\ Tetrabutylammonium fluoride\\ \textit{tert-Butyldimethylsilyl protecting group}\\ See TBDMS \end{array}$

XX Abbreviations

TBTU	O-(Benzotriazol-1-yl)-N,N,N',N'-tetramethyluronium tetrafluoroborate
TDAE	Tetrakis(dimethylamino)ethylene
TEMPO	2,2,6,6-Tetramethylpiperidine-N-oxide
TFT	Thin film transistor
THF	1. Tetrahydrofuran
	2. Tetrahydrofolate coenzyme
THP	Tetrahydropyranyl protecting group
TIPS	Triisopropylsilyl protecting group
TLC	Thin-layer chromatography
TMS	Trimethylsilyl protecting group
TN	Twisted nematic
TPP	Triphenylphosphine
TPPO	Triphenylphosphine oxide
TR	Trypanothione reductase
VHR	Voltage holding ratio
ZPE	Zero point energy

Contents

Preface to the Second Edition XIII Preface to the First Edition XV Abbreviations XVII

1	Introduction 1	

- 1.1 Why Organofluorine Chemistry? 1
- 1.2 History 1
- 1.3 The Basic Materials 3
- 1.3.1 Hydrofluoric Acid 3
- 1.3.2 Fluorine 5
- 1.4 The Unique Properties of Organofluorine Compounds 7
- 1.4.1 Physical Properties 7
- 1.4.2 Chemical Properties 13
- 1.4.3 Ecological Impact 15
- 1.4.3.1 Ozone Depletion by Chlorofluorocarbons 15
- 1.4.3.2 Greenhouse Effect 17
- 1.4.4 Physiological Properties 18
- 1.4.5 Analysis of Fluorochemicals: ¹⁹F NMR Spectroscopy 20 References 21

Part I Synthesis of Complex Organofluorine Compounds 25

2 Introduction of Fluorine 27

- 2.1 Perfluorination and Selective Direct Fluorination 27
- 2.2 Electrochemical Fluorination (ECF) 34
- 2.3 Nucleophilic Fluorination 36
- 2.3.1 Finkelstein Exchange 36
- 2.3.2 "Naked" Fluoride 36
- 2.3.3 Lewis Acid-Assisted Fluorination 39
- 2.3.4 The "General Fluorine Effect" 41
- 2.3.5 Amine–Hydrogen Fluoride and Ether–Hydrogen Fluoride Reagents 42

VIII Contents

1	
2.3.6	Hydrofluorination, Halofluorination, and Epoxide Ring Opening 43
2.4	Synthesis and Reactivity of Fluoroaromatic Compounds 46
2.4.1	Synthesis of Fluoroaromatic Compounds 46
2.4.2	Reductive Aromatization 47
2.4.3	The Balz–Schiemann Reaction 47
2.4.4	The Fluoroformate Process 49
2.4.5	Transition Metal-Catalyzed Aromatic Fluorination 49
2.4.6	The Halex Process 55
2.4.7	Think Negative! – "Orthogonal" Reactivity of Perfluoroaromatic and
	Perfluoroolefinic Systems 55
2.4.8	The "Special Fluorine Effect" 58
2.4.9	Aromatic Nucleophilic Substitution 59
2.4.10	Activation of the Carbon–Fluorine Bond by Transition Metals 63
2.4.10.1	Electrophilically Activated Arylation by Fluoroarenes 63
2.4.11	Activation of Fluoroaromatic Compounds by Ortho-Metalation 64
2.5	Transformations of Functional Groups 67
2.5.1	Hydroxy into Fluoro 67
2.5.1.1	Two-Step Activation–Fluorination 68
2.5.1.2	α , α -Difluoroalkylamine and α -Fluoroenamine Reagents 68
2.5.1.3	Sulfur Tetrafluoride, DAST, and Related Reagents 71
2.5.1.4	Amine-Hydrogen Fluoride Reagents 73
2.5.2	Conversion of Carbonyl into gem-Difluoromethylene 74
2.5.2.1	Sulfur Tetrafluoride, DAST, and Related Reagents 74
2.5.3	Carboxyl into Trifluoromethyl 77
2.5.4	Oxidative Fluorodesulfuration 78
2.6	"Electrophilic" Fluorination 85
2.6.1	Xenon Difluoride 85
2.6.2	Perchloryl Fluoride and Hypofluorides 86
2.6.3	"NF"-Reagents 88
	References 98
3	Perfluoroalkylation 107
3.1	Radical Perfluoroalkylation 107
3.1.1	Structure, Properties, and Reactivity of Perfluoroalkyl Radicals 107
3.1.2	Preparatively Useful Reactions of Perfluoroalkyl Radicals 110
3.1.3	"Inverse" Radical Addition of Alkyl Radicals to Perfluoroolefins 115
3.2	Nucleophilic Perfluoroalkylation 118
3.2.1	Properties, Stability, and Reactivity of Fluorinated Carbanions 118
3.2.2	Perfluoroalkyl Metal Compounds 120
3.2.3	Perfluoroalkylsilanes 130
3.3	"Electrophilic" Perfluoroalkylation 139
3.3.1	Properties and Stability of Fluorinated Carbocations 139
3.3.2	Arylperfluoroalkyliodonium Salts 142
3.3.3	Perfluoroalkyl Sulfonium, Selenonium, Telluronium, and Oxonium
	Salts 149