Molecular Block-hmology

PRINCIPLES AND APPLICATIONS OF RECOMBINANT DNA

Bernard R. Glick Jack J. Pasternak

THIRD EDITION

Molecular Biotechnology

PRINCIPLES AND APPLICATIONS
OF RECOMBINANT DNA

Bernard R. Glick Jack J. Pasternak

Department of Biology, University of Waterloo Waterloo, Ontario, Canada

Washington, D.C.

Address editorial correspondence to ASM Press, 1752 N St. NW, Washington, DC 20036-2904, USA

Send orders to ASM Press, P.O. Box 605, Herndon, VA 20172, USA

Phone: (800) 546-2416 or (703) 661-1593

Fax: (703) 661-1501

E-mail: books@asmusa.org Online: www.asmpress.org

Copyright © 1994, 1998, 2003 ASM Press

American Society for Microbiology 1752 N St. NW Washington, DC 20036-2904

Library of Congress Cataloging-in-Publication Data

Glick, Bernard R.

Molecular biotechnology: principles and applications of recombinant DNA / Bernard R. Glick and Jack J. Pasternak.—3rd ed.

p.; cm.

Includes bibliographical references and index. ISBN 1-55581-224-4 (hardcover : alk. paper)—ISBN 1-55581-269-4 (paperback : alk. paper)

1. Biotechnology. 2. Genetic engineering. 3. Molecular biology. [DNLM: 1. Biotechnology. 2. Genetic Engineering. 3. Molecular Biology. TP 248.2 G559m 2003] I. Pasternak, Jack J. II. Title.

TP248.2 .G58 2003 660'.65—dc21

2002013148

10 9 8 7 6 5 4 3 2 1

All Rights Reserved Printed in the United States of America

Cover and interior design: Susan Brown Schmidler Cover illustration: Terese Winslow

THIRD EDITION

Molecular Biotechnology

PRINCIPLES AND
APPLICATIONS OF
RECOMBINANT DNA

To Marcia, for being Marcia BRG

To the memory of Albert and Jennie Pasternak and to their great-grandchildren, Madelaine, Miranda, Nina, and Maya JJP

Preface

OLECULAR BIOTECHNOLOGY HAS MADE MAJOR ADVANCES since the second edition of Molecular Biotechnology: Principles and Applications Lof Recombinant DNA was published in 1998. Otherwise, a new edition wouldn't be necessary! Molecular biotechnology is no longer based on the hope that recombinant DNA technology will someday produce worthwhile "goods and services." The last 4 years has seen many molecular biotechnology products for medical, agricultural, and industrial uses become commonplace. Recombinant DNA technology has finally lived up to all the hype. Along with this maturity, new developments and innovative techniques have been perfected. In this new edition, we were able to update all aspects of Molecular Biotechnology, although the original framework has been maintained. A number of chapters have been extensively overhauled to accommodate new information, some chapters have been conflated with others, many new figures that illustrate concepts and principles have been added, and various recent examples replace those from the mid-1990s and earlier. And, as noted in the prefaces to the previous editions, we have tried both not to rely on confusing scientific terminology for its own sake and to present all the information as clearly as possible.

We appreciate the support and enthusiasm of Jeff Holtmeier, director of ASM Press. We thank Mary McKenney, who edited the manuscript with consummate skill and understanding. And we are especially indebted to Ken April of ASM Press, who patiently shepherded us through the entire process and, with the greatest aplomb, combined all the disparate elements to create this new edition.

Preface to the First Edition

OLECULAR BIOTECHNOLOGY EMERGED as a new research field that arose as a result of the fusion in the late 1970s of recombinant DNA technology and traditional industrial microbiology. Whether one goes to the movies to see *Jurassic Park* with its ingenious but scientifically untenable plot of cloning dinosaurs, reads in the newspaper about the commercialization of a new "biotech" tomato that has an extended shelf life, or hears one of the critics of molecular biotechnology talking about the possibility of dire consequences from genetic engineering, there is a significant public awareness about recombinant DNA technology. In this book, we introduce and explain what molecular biotechnology actually is as a scientific discipline, how the research in the area is conducted, and how this technology may realistically impact on our lives in the future.

We have written *Molecular Biotechnology: Principles and Applications of Recombinant DNA* to serve as a text for courses in biotechnology, recombinant DNA technology, and genetic engineering or for any course introducing both the principles and the applications of contemporary molecular biology methods. The book is based on the biotechnology course we have offered for the past 12 years to advanced undergraduate and graduate students from the biological and engineering sciences at the University of Waterloo. We have written this text for students who have an understanding of basic ideas from biochemistry, molecular genetics, and microbiology. We are aware that it is unlikely that students will have had all of these courses before taking a course on biotechnology. Thus, we have tried to develop the topics in this text by explaining their broader biological context before delving into molecular details.

This text emphasizes how recombinant DNA technology can be used to create various useful products. We have, wherever possible, used experimental results and actual methodological strategies to illustrate basic concepts, and we have tried to capture the flavor and feel of how molecular biotechnology operates as a scientific venture. The examples that we have selected—from a vast and rapidly growing literature—were chosen as case studies that not only illustrate particular points but also provide the reader with a solid basis for understanding current research in specialized areas of

molecular biotechnology. Nevertheless, we expect that some of our examples will be out of date by the time the book is published, because molecular biotechnology is such a rapidly changing discipline.

For the ease of the day-to-day practitioners, scientific disciplines often develop specialized terms and nomenclature. We have tried to minimize the use of technical jargon and, in many instances, have deliberately used a simple phrase to describe a phenomenon or process that might otherwise have been expressed more succinctly with technical jargon. In any field of study, synonymous terms that describe the same phenomenon exist. In molecular biotechnology, for example, recombinant DNA technology, gene cloning, and genetic engineering, in a broad sense, have the same meaning. When an important term or concept appears for the first time in this text, it is followed in parentheses with a synonym or equivalent expression. An extensive glossary can be found at the end of the book to help the reader with the terminology of molecular biotechnology.

Each chapter opens with an outline of topics and concludes with a detailed summary and list of review questions to sharpen students' critical thinking skills. All of the key ideas in the book are carefully illustrated by the more than 200 full-color diagrams in the pedagogical belief that a picture is indeed worth a thousand words. After introducing molecular biotechnology as a scientific and economic venture in Chapter 1, the next five chapters (2 to 6) deal with the methodologies of molecular biotechnology. The chapters of Part I act as a stepping-stone for the remainder of the book. Chapters 7 to 12 in Part II present examples of microbial molecular biotechnology covering such topics as the production of metabolites, vaccines, therapeutics, diagnostics, bioremediation, biomass utilization, bacterial fertilizers, and microbial pesticides. Chapter 13 describes some of the key components of large-scale fermentation processes using genetically engineered (recombinant) microorganisms. In Part III, we deal with the molecular biotechnology of plants and animals (Chapters 14 and 15). The isolation of human diseasecausing genes by using recombinant DNA technology and how, although it is in its early stages, genetic manipulation is being currently contemplated for the treatment of human diseases are presented in Chapters 16 and 17. The book concludes with coverage of the regulation of molecular biotechnology and patents in Part IV.

A brief mention should be made about the reference sections that follow each chapter. Within many of the chapters we have relied upon the published work of various researchers. In all cases, although not cited directly in the body of a chapter, the original published articles are noted in the reference section of the appropriate chapter. In some cases, we have taken "pedagogic license" and either extracted or reformulated data from the original publications. Clearly, we are responsible for any distortions or misrepresentations from these simplifications, although we hope that none has occurred. The reference sections also contain other sources that we used in a general way, which might, if consulted, bring the readers closer to a particular subject.

Acknowledgments

We express our appreciation to the following people who reviewed various parts of the manuscript as it was being developed. The comments of these expert scientists and teachers helped us immeasurably: Arthur I. Aronson, Purdue University; Ronald M. Atlas, University of Louisville; Fred Ausubel,

Massachusetts General Hospital; David R. Benson, University of Connecticut; Jean E. Brenchley, Pennsylvania State University; A. M. Chakrabarty, University of Illinois at Chicago; Stan Gelvin, Purdue University; Janet H. Glaser, University of Illinois at Urbana-Champaign; David Gwynne, Cambridge NeuroScience; George D. Hegeman, Indiana University; James B. Kaper, University of Maryland at Baltimore; Donald R. Lightfoot, Eastern Washington University at Cheney and Spokane; Cynthia Moore, Washington University; William E. Newton, Virginia Polytechnic University; Danton H. O'Day, University of Toronto in Mississauga; Richard D. Palmiter, University of Washington; David H. Persing, Mayo Clinic; William S. Reznikoff, University of Wisconsin; Campbell W. Robinson, University of Waterloo; Marc Siegel, University of Waterloo; Aaron J. Shatkin, Center for Advanced Biotechnology and Medicine at Rutgers University; Jim Schwartz, Genentech; Daniel C. Stein, University of Maryland at College Park; Dean A. Stetler, University of Kansas; and Robert T. Vinopal, University of Connecticut.

The following professionals at ASM Press worked on the book and deserve our thanks: Susan Birch, senior production editor; Ruth Siegal, developmental editor; Jodi Simpson, copy editor; Susan Schmidler, designer and art director; Peg Markow at Ruttle, Shaw & Wetherill, Inc., senior project manager; and Network Graphics, illustrators. Finally we are indebted to Patrick Fitzgerald, Director of ASM Press, who, in all possible ways, helped transform our original efforts into an acceptable final form. His encouragement as a persistent and friendly "torturer" was deeply appreciated.

Bernard R. Glick Jack J. Pasternak

Contents

Preface xix
Preface to the First Edition xxi

Fundamentals of Molecular Biotechnology 1

The Molecular Biotechnology Revolution
Recombinant DNA Technology 3
Emergence of Molecular Biotechnology 5
Commercialization of Molecular Biotechnology 7
Concerns and Consequences 10
SUMMARY 12
REFERENCES 13
REVIEW QUESTIONS 13

Molecular Biotechnology Biological Systems
Prokaryotic and Eukaryotic Organisms 14
Escherichia coli 15
Saccharomyces cerevisiae 17
Secretion Pathways in Prokaryotic and Eukaryotic Organisms 18
Eukaryotic Cells in Culture 21
SUMMARY 22
REFERENCES 22
REVIEW QUESTIONS 22

DNA, RNA, and Protein Synthesis 23
Structure of DNA 23
DNA Replication 27

Decoding Genetic Information: RNA and Protein 28
Translation 34
Regulation of mRNA Transcription in Bacteria 38
Regulation of mRNA Transcription in Eukaryotes 42
SUMMARY 45
REFERENCES 46
REVIEW QUESTIONS 46

Recombinant DNA Technology 47

Restriction Endonucleases 49
Plasmid Cloning Vectors 57
Plasmid Cloning Vector pBR322 58

Transformation and Selection 60 Other Plasmid Cloning Vectors 61

Creating and Screening a Library 64

Making a Gene Library 64
Screening by DNA Hybridization 67
Screening by Immunological Assay 73
Screening by Protein Activity 73

Cloning DNA Sequences That Encode Eukaryotic Proteins 75 Vectors for Cloning Large Pieces of DNA 80

Bacteriophage λ Vectors 80
Cosmids 83
High-Capacity Bacterial Vector Systems 86
Genetic Transformation of Prokaryotes 86

Transferring DNA into *E. coli* 86
Electroporation 86
Conjugation 87
SUMMARY 89

REFERENCES 89
REVIEW QUESTIONS 90

Chemical Synthesis, Sequencing, and Amplification of DNA 91

Chemical Synthesis of DNA 91

The Phosphoramidite Method 92
Uses of Synthesized Oligonucleotides 96

DNA Sequencing Techniques 101

Dideoxynucleotide Procedure for Sequencing DNA 102 Automated DNA Sequencing 106 Using Bacteriophage M13 as a DNA Sequencing Vector 107 Primer Walking 110

PCR 110

Gene Synthesis by PCR 115 Cycle Sequencing 115 SUMMARY 118
REFERENCES 119
REVIEW OUESTIONS 120

6 Manipulation of Gene Expression in Prokaryotes 121

Gene Expression from Strong and Regulatable Promoters 122

Regulatable Promoters 122

Increasing Protein Production 126

Large-Scale Systems 126

Expression in Other Microorganisms 128

Fusion Proteins 130

Cleavage of Fusion Proteins 131

Uses of Fusion Proteins 131

Surface Display 135

Unidirectional Tandem Gene Arrays 136

Translation Expression Vectors 138

Increasing Protein Stability 142

Protein Folding 142

Overcoming Oxygen Limitation 145

Use of Protease-Deficient Host Strains 145

Bacterial Hemoglobin 145

DNA Integration into the Host Chromosome 146

Removing Selectable Marker Genes 149

Increasing Secretion 151

L-Form Bacteria 153

Metabolic Load 155

SUMMARY 159

REFERENCES 159

REVIEW QUESTIONS 161

7 Heterologous Protein Production in Eukaryotic Cells 163

Saccharomyces cerevisiae Expression Systems 165

S. cerevisiae Vectors 166

Intracellular Production of Heterologous Proteins in S. cerevisiae 169

Secretion of Heterologous Proteins by S. cerevisiae 171

Pichia pastoris and Other Yeast Expression Systems 171

Baculovirus-Insect Cell Expression System 174

Baculovirus Expression Vector System 175

Increasing the Yield of Recombinant Baculovirus 175

Construction of an E. coli-Insect Cell Baculovirus Shuttle Vector 177

Mammalian Glycosylation and Processing of Precursor Proteins in Insect Cells 180

Mammalian Cell Expression Systems 181

Selectable Marker Systems for Mammalian Expression Vectors 185

SUMMARY 187
REFERENCES 187
REVIEW QUESTIONS 189

8 Directed Mutagenesis and Protein Engineering 190

Directed Mutagenesis Procedures 191

Oligonucleotide-Directed Mutagenesis with M13 DNA 192 Oligonucleotide-Directed Mutagenesis with Plasmid DNA 194 PCR-Amplified Oligonucleotide-Directed Mutagenesis 195 Random Mutagenesis with Degenerate Oligonucleotide Primers 198 Random Mutagenesis with Nucleotide Analogues 201 Error-Prone PCR 201 DNA Shuffling 203 Mutant Proteins with Unusual Amino Acids 204 Protein Engineering 205 Adding Disulfide Bonds 205 Changing Asparagine to Other Amino Acids 209 Reducing the Number of Free Sulfhydryl Residues 209 Increasing Enzymatic Activity 211 Modifying Metal Cofactor Requirements 212 Decreasing Protease Sensitivity 214 Modifying Protein Specificity 215 Increasing Enzyme Stability and Specificity 218 Altering Multiple Properties 219 SUMMARY 221 REFERENCES 222

Molecular Biotechnology of Microbial Systems 225

Molecular Diagnostics 227

Immunological Diagnostic Procedures 228

Enzyme-Linked Immunosorbent Assay 229

Monoclonal Antibodies 230

REVIEW QUESTIONS 223

Formation and Selection of Hybrid Cells 231

Identification of Specific Antibody-Producing Hybrid Cell Lines 232

DNA Diagnostic Systems 234

Hybridization Probes 235

Diagnosis of Malaria 236

Detection of Trypanosoma cruzi 236

Nonradioactive Hybridization Procedures 237

Molecular Beacons 240

DNA Fingerprinting 241

Random Amplified Polymorphic DNA 242

Bacterial Biosensors 244

Molecular Diagnosis of Genetic Disease 245

Screening for Cystic Fibrosis 246

Sickle-Cell Anemia 246

The PCR/OLA Procedure 248

Padlock Probes 250

Genotyping with Fluorescence-Labeled PCR Primers 250

SUMMARY 253

REFERENCES 253

REVIEW QUESTIONS 254

10 Therapeutic Agents 256

Pharmaceuticals 257

Isolation of Interferon cDNAs 257

Human Interferons 258

Human Growth Hormone 259

Tumor Necrosis Factor Alpha 260

Optimizing Gene Expression 261

Therapeutics Produced and Delivered by Intestinal Bacteria 262

Enzymes 263

DNase I 263

Alginate Lyase 265

Phenylalanine Ammonia Lyase 266

α₁-Antitrypsin 267

Monoclonal Antibodies as Therapeutic Agents 267

Structure and Function of Antibodies 269

Preventing Rejection of Transplanted Organs 270

Treating Brain Tumors 270

Chemically Linked Monoclonal Antibodies 271

Human Monoclonal Antibodies 272

Hybrid Human-Mouse Monoclonal Antibodies 274

Production of Antibodies in E. coli 277

Phage Combinatorial Libraries 277

Shuffling CDR Sequences 280

Single-Chain Antibodies 282

Nucleic Acids as Therapeutic Agents 283

Antisense RNA 284

Antisense Oligonucleotides 284

Ribozymes 288

Chimeric RNA-DNA Molecules 291

Interfering RNAs 292

Antibody Genes 294

Treating Genetic Disorders 295

Human Gene Therapy 298

Prodrug Activation Therapy 303

SUMMARY 304

REFERENCES 305 REVIEW QUESTIONS 307

11 Vaccines 309

Subunit Vaccines 312

Herpes Simplex Virus 312 Foot-and-Mouth Disease 313 Peptide Vaccines 315

Genetic Immunization: DNA Vaccines 317

Attenuated Vaccines 322

Cholera 322

Salmonella Species 324

Leishmania Species 325

Herpes Simplex Virus 326

Vector Vaccines 327

Vaccines Directed against Viruses 327
Vaccines Directed against Bacteria 333
Bacteria as Antigen Delivery Systems 335

SUMMARY 336

REFERENCES 337

REVIEW QUESTIONS 338

12 Synthesis of Commercial Products by Recombinant Microorganisms 340

Restriction Endonucleases 340 Small Biological Molecules 344

Synthesis of L-Ascorbic Acid 345

Microbial Synthesis of Indigo 349

Synthesis of Amino Acids 350

Removal of Lipids 354

Antibiotics 355

Cloning Antibiotic Biosynthesis Genes 356

Synthesis of Novel Antibiotics 360

Engineering Polyketide Antibiotics 361

Improving Antibiotic Production 365

Peptide Antibiotics 367

Biopolymers 367

Engineering *Xanthomonas campestris* for Xanthan Gum Production 367

Isolation of Melanin Biosynthesis Genes 369

Synthesis of an Animal Adhesive Biopolymer in Microbial Cells 370

Microbial Synthesis of Rubber 372

Microbial Production of Polyhydroxyalkanoates 372

SUMMARY 375

REFERENCES 375

REVIEW QUESTIONS 377

13 Bioremediation and Biomass Utilization 378

Microbial Degradation of Xenobiotics 378

Genetic Engineering of Biodegradative Pathways 382

Manipulation by Transfer of Plasmids 384

Manipulation by Gene Alteration 385

Utilization of Starch and Sugars 394

Commercial Production of Fructose and Alcohol 395

Improving Alcohol Production 396

Improving Fructose Production 398

Zymomonas mobilis 400

Silage Fermentation 404

Utilization of Cellulose 405

Components of Lignocellulose 406

Isolation of Prokaryotic Cellulase Genes 408

Isolation of Eukaryotic Cellulase Genes 410

Manipulation of Cellulase Genes 412

SUMMARY 413

REFERENCES 414

REVIEW QUESTIONS 415

Plant Growth-Promoting Bacteria 416

Nitrogen Fixation 417

Nitrogenase 419

Components of Nitrogenase 419

Genetic Engineering of the Nitrogenase Gene Cluster 421

Glycogen Synthase Mutants 425

Engineering Oxygen Levels 427

Hydrogenase 427

Hydrogen Metabolism 428

Genetic Engineering of Hydrogenase Genes 428

Nodulation 430

Competition among Nodulating Organisms 430

Genetic Engineering of Nodulation Genes 431

Growth Promotion by Free-Living Bacteria 435

Decreasing Plant Stress 438

Phytoremediation 440

Biocontrol of Pathogens 442

Siderophores 443

Antibiotics 445

Enzymes 447

Ice Nucleation and Antifreeze Proteins 447

Ethylene 449

Root Colonization 451

SUMMARY 451

REFERENCES 452

REVIEW QUESTIONS 453

15 Microbial Insecticides 455

Insecticidal Toxin of B. thuringiensis 456

Mode of Action and Use 456

Toxin Gene Isolation 460

Engineering of B. thuringiensis Toxin Genes 462

Preventing the Development of Resistance 470

Genetic Engineering for Improved Biocontrol 472

Baculoviruses as Biocontrol Agents 473

Mode of Action 473

Genetic Engineering for Improved Biocontrol 475

SUMMARY 477

REFERENCES 478

REVIEW QUESTIONS 480

Large-Scale Production of Proteins from Recombinant Microorganisms 481

Principles of Microbial Growth 483

Batch Fermentation 483

Fed-Batch Fermentation 485

Continuous Fermentation 486

Maximizing the Efficiency of the Fermentation Process 488

High-Density Cell Cultures 489

Bioreactors 490

Typical Large-Scale Fermentation Systems 494

Two-Stage Fermentation in Tandem Airlift Reactors 495

Two-Stage Fermentation in a Single Stirred-Tank Reactor 496

Batch versus Fed-Batch Fermentation 497

Harvesting Microbial Cells 499

Disrupting Microbial Cells 502

Downstream Processing 504

Protein Solubilization 506

Large-Scale Production of Plasmid DNA 506

SUMMARY 507

REFERENCES 507

REVIEW QUESTIONS 509

III Eukaryotic Systems 511

17 Genetic Engineering of Plants: Methodology 513

Plant Transformation with the Ti Plasmid of *Agrobacterium tumefaciens* 514

Ti Plasmid-Derived Vector Systems 517

Physical Methods of Transferring Genes to Plants 520