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Chapter 0
Introduction

The foundations of the theory of discrete subgroups of Lie groups were laid
down in the fifties and sixties of this century in the papers of A.I. Mal'tsev,
G. Mostow, L. Auslander, and a number of other mathematicians. The way
had been prepared by other investigations into special classes of discrete
groups, owing their origins to arithmetic, geometry, the theory of functions,
and to physics.

The first nontrivial discrete subgroup—the subgroup SL2(Z) of the group
SLy(R), later called the modular Klein group—was considered in essence by
Lagrange and Gauss in their investigations into the arithmetic of quadratic
forms in two variables. Its natural generalization was the subgroup SL, (Z)
of the group SL,(R). The investigation of this group, as a discrete group of
transformations of the space of positive definite quadratic forms in n vari-
ables, constituted the objective of reduction theory, worked out by A.N. Ko-
rkin and E.I. Zolotarev, Hermite, Minkowski, and others in the second half ot
the nineteenth century, and at the beginning of this.

A number of other arithmetically defined discrete subgroups of the classi-
cal Lie groups—the groups of units of rational quadratic forms, the groups of
units of simple algebras over the field Q of rationals, the group of integer sym-
plectic matrices—were studied in the first half of this century by B. A. Venkov,
H. Weyl, C.L. Siegel and others.

In the theory of functions of a complex variable the integration of algebraic
functions, and, more generally, the solution of linear differential equations
with algebraic coefficients, led to the consideration of certain special func-
tions, later called automorphic, invariant relative to various discrete subgroups
of the group SL2(R), operating in the upper halfplane by fractional-linear
transformations. Some of the discrete subgroups of the group SLy(R) arising
in this way were studied in the middle of the nineteentﬁ century by Hermite,
Dedekind, and Fuchs. Among these was the group SL2(Z), but represented in
a form different from that of Lagrange and Gauss. A wide class of such groups,
including the group SL2(Z) and some subgroups of SLy(R) commensurable
with it, were studied by Klein. Almost simultaneously, Poincaré in 1881-1882
gave a geometrical description of all the discrete groups of fractional-linear
transformations of the upper halfplane, called by him the Fuchsian groups.

In the first half of this century a number of separate classes of meromorphic
functions of several variables were considered. These functions were connected
with arithmetically defined discrete subgroups of the groups (SLz(R))* (the
modular functions of Hilbert), Sp,,, (R) (the modular functions of Siegel), and
of other semisimple Lie groups.

In crystallography, beginning at the end of the last century, symmetry
groups of crystal structures were studied. These are discrete subgroups of
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the group of motions of three-dimensional Euclidean space. E. S. Fedorov and
A. Schoenflies obtained the classification of such groups. Analogous groups of
motions of n-dimensional Euclidean space were studied in 1911 by Bieberbach.

Another branch was the study of discrete subgroups of solvable Lie groups,
in particular abelian and nilpotent. The first result on such groups, equivalent
to the description of discrete subgroups in R?, was obtained by Jacobi in
the first half of the last century, in the course of describing the periods of
meromorphic functions.

In the present work we have tried to systematize all the basic results on
the theory of discrete subgroups of Lie groups. Most of it has the character
of a survey. But in those cases when there is a short proof, and in particu-
lar when no short proof has yet been published, we present one. Apart from
the original papers, our basic sources were: the monographs of Raghunathan
(1972), Mostow (1973) and Zimmer (1984), the surveys of H.-C. Wang (1972),
Mostow (1978A), Auslander (1973), Margulis (1974), and finally the notes for
specialized courses given by the first-named author at Moscow State Univer-
sity.

A more detailed exposition of the theory of discrete subgroups of motions in
spaces of constant curvature is given in the paper of Vinberg and Shvartsman
(1988) in volume 29 of this Encyclopaedia, which deals particularly with spaces
of constant curvature.

We have adopted the following notations and conventions. N denotes the
natural numbers, Z the integer numbers, Q the field of the rationals, R that
of the reals, and C that of the complex numbers.

If a Lie group is denoted by a capital latin letter, such as H, then its
tangent Lie algebra will be denoted by the corresponding small gothic letter,
in the above case .

A connected component of a topological group G will be denoted by G°.
The universal covering of G will be denoted by G.If H is a subset of G,
we will denote by H its closure in the topology of the group G.

If H is a subset of the affine manifold X , we will denote by ¢H its closure
in the Zariski topology of that manifold.

Ng(H) is the normalizer of the subgroup H in the group G, Z(G) is the
center of the group G, and Zg(a) is the centralizer of the element a € G in
the group G'.

We will denote by A o< B, or, more precisely, by Al>(p< B, where o : A —

Aut B, the semidirect product of the groups A and B.

0,, is the orthogonal group, U,, is the unitary group, O,, ; is the pseudo-
orthogonal group, and Sp,,, is the symplectic group.

We will say a few words about the use of the terms “algebraic manifold”
and “algebraic group” in this paper.

Throughout, unless specified otherwise, we understand by algebraic man-
ifold (group) a real algebraic manifold (group), i.e. an algebraic manifold
(group) defined over R. It is identified with the set (group) of its real points,
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which by definition is assumed to be dense in the sense of Zariski in the set
of complex points. Along with this we consider, mainly in §6 of Chap. 3, com-
plex algebraic manifolds (groups), identified with the sets (groups) of their
complex points.

The expression “algebraic k-manifold (k-group)” means “real algebraic
manifold {group), defined over a subfield k£ € R”. We understand similarly
the expression “complex algebraic k-manifold (k-group)”, where k is any
numerical field.

If X (respectively G) is a real or complex algebraic k-manifold (respec-
tively k-group), then for any field K D k we denote by X(K) (respectively
G(K)) the set (respectively group) of K-points of the manifold K (respec-
tively group G).

In conclusion we would like to thank A. N. Starkov, who drew our attention
to a number of inaccuracies in the Russian original, making it possible to make
the appropriate corrections in the English translation.

Chapter 1
Discrete Subgroups of Locally Compact
Topological Groups

Throughout this chapter, when the term “locally compact group” is encoun-
tered, we have in mind a locally compact topological group with a countable
basis of open sets.

§1. The Simplest Properties of Lattices

1.1. Definition of a Discrete Subgroup. Examples. A subgroup I’
of a topological group G is said to be discrete, if I" is a discrete subset of
the topological group G . This is equivalent to the existence in the group G
of a neighborhood Ul(e) of the unit element e such that I'NU(e) = {e}.

Examples 1.1. The following examples are discrete subgroups:

a) The subgroup of integers in the additive group R of real numbers;

b) The integer linear span Ze; + ...+ Zen, of a linearly independent family
€1,...,€ey of vectors in an n-dimensional real vector space V;

¢) The additive subgroup of any algebraic number field k naturally embedded
in the adele group Ay (see Weil 1982);

d) The subgroup GL,(Z) in the group GL,(R);

e) A finite subgroup in any topological group.
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We note that any discrete subgroup of a compact group is finite.

We recall that on each locally compact group G there exists a right-
invariant Borel measure, unique up to a factor. This measure is called a right-
invariant Haar measure on the group G (see Kirillov 1978).

Fix a right-invariant Haar measure p on the group G. Since left and right
shifts by the elements of the group G commute, then a left shift I,(u) of the
measure y is once again a right-invariant measure. Therefore I5(p) = x(g9)u,
where the function x(g) is a character of the group G.

A group G is said to be unimodular if x(g) = 1. This means that a
right-invariant Haar measure is also left-invariant.

Now suppose that I' is a discrete subgroup of a locally compact group
G. Then a right-invariant Haar measure g on G induces a measure on the
quotient space G/I', which we will denote by 7.

A discrete subgroup I' of a locally compact group G is said to be a lattice
if the volume of the quotient space G/I", relative to the measure 7, is finite. In
what follows we will denote that measure by v{(G/I"), and call it the covolume
of the lattice I'.

If the quotient space G/I' is compact, then a lattice I" is said to be
uniform. One also says that I' is a uniform discrete subgroup of the group
G.

Examples 1.2.

a) The discrete subgroup I' of Example 1.1b) is a lattice in V if and only
if m =mn.Inthis case I" = Ze; & - - - @ Ze,, is a uniform lattice, and the
quotient space V/I' is an n-dimensional torus. For details, see Chap.2,
1.2.

b) The subgroup SL2(Z) is a lattice in the group SLz(R). However the
quotient space SL,(R)/SL,(Z) is non-compact for n > 2 (see Chap.3,
2.3).

¢) The discrete subgroup k of Example 1.1c) is a uniform lattice in Ay (Weil
1982).

We will consider one necessary condition for the existence of a lattice.

Proposition 1.3. If a locally compact group G contains a lattice I', then
G is unimodular.

< Indeed,

B(G/T) =H(g~H(G/D) = ly(w)(G/T) = x(9)E(C/T) ,
from which it follows that x(g)=1. »

As is clear from the following example, the necessary condition just pre-
sented is not sufficient for the existence of a lattice in a locally compact group.

Example 1.4. Suppose that G = Q;‘,’ is the additive group of p-adic
numbers. Since lim,_ ., p"a = 0 for any a € Q;, there do not exist any
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nontrivial discrete subgroups. On the other hand, the group G is abelian and
therefore unimodular.

Example 1.5. Suppose that G = Aff R! is the group of affine transforma-
tions of the line. It is isomorphic to the matrix group

t=(5 1)

dadb

a,bER,aaéO}.

The measure dg = is a right-invariant Haar measure on the group G,
as is easily verified, but it is not left-invariant. Therefore the group AffR! is
not unimodular. That means that it cannot contain lattices, although it does
contain nontrivial discrete subgroups, for example the subgroup of matrices

of the form b
1
{(51)]eez}.

Proposition 1.6 (Garland and Goto 1966). If a connected Lie group G
contains a lattice, then the group of inner automorphisms of the group G is
closed in the group of all of its automorphisms.

We note that for a Lie group of general type, so far no simple sufficient
condition has been found for the existence in it of a lattice (see Chap. 4, 1.1).

Suppose that G is a locally compact group, and that I' is a lattice in it.
We will denote by 7 the canonical mapping G — G/TI.

Theorem 1.7 (Raghunathan 1972). For an arbitrary sequence {gn} of
elements of the group G, the sequence {m(gn)} is discrete if and only if there
exists in I' a sequence {v,} such that

a) m# e

b) gn'yng;1 — e as 1n — 0o.

< Choose in G an increasing family of compacta K; C Ky C -+ C
K, C .-+, such that G = UK, . In view of the finiteness of the volume of
the quotient space G/I', the sequence ¢, = v(G/I" — (K,)) tends to zero.
We choose in G a fundamental system of compact neighborhoods V,, of the
identity, such that v(V,) > €, , and put U, = V71V,

Suppose that m(g,) does not have a limit point. Since the set 7(U,K,)
is compact, then m(gn) ¢ m(UnK,) for almost all N. Hence it easily follows
that n(Vagn) N n(VoK,) = @ for almost all N. Further, it is obvious that

v(Vagn) = v(VN) > €, > v(G/T — m(VoKy,)) .

Since the sets m(V,gn) and m(VoKr,) do not intersect, then, for almost all
N, the set V,,gn cannot be mapped in a 1-1 way onto G/I.
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Accordingly, for almost all N there exists an element yy € I', vy # e,
such that vgy = v'gnyn for certain elements v,v’ € V,, . i.e. gN'yNg;,l e U,.
The first part of the proposition is proved.

Now suppose that the sequence g, € G is such that one can choose ele-
ments v, € I', v, # e. for which the sequence g,vng;' — e as n — oo,
and also such that the sequence 7(g,) has a limit point #(g) in the space
G/I'. Passing if necessary to a subsequence, we may suppose that there
exist o, € ' such that lim,—..o grnan = g in the group G. By hypothe-
sis, liMp oo GnYngn ! = lim, oo (gnam ) (@ Mynan) (o g!) = e, and since
limp 00 gnin = g, then lim, o a,ynan = e. Since the group G is dis-
crete, then for almost all n, o'y, = €, i.e. 7, = e for almost all n. This
is a contradiction. »

Remark. In the proof of the second part of Theorem 1.7, we used only the
discreteness of the group I

If G is a locally compact abelian group, then every lattice I" in the group
G is uniform. This is an immediate consequence of Theorem 1.7 (see also
Corollary 1.2 of Chap. 2).

Proposition 1.8 (S.P. Wang 1976b). Suppose that G is a locally compact
group, I' a lattice in G, and X a subset in G. Then the two following
conditions are equivalent:

a) The set w(X) is relatively compact in G/I";

b) For any compact neighborhood K of the point e in the group G, and for
any x € X, the number of elements in the intersection tKx 1N T does
not exceed some constant, depending only on K.

We conclude this subsection with the formulation of a property of uniform
lattices, essentially proved in (Selberg 1960).

For any element g € G and any subgroup I' C G, we will denote the set
{vgy~',ye '} by C(Ig).

Proposition 1.9. If I" is a uniform lattice in G and the set C(I',g) is
discrete, then the set C(G,g) is closed.

1.2. Commensurability and Reducibility of Lattices. Many inter-
esting properties of discrete subgroups in topological groups are properties of
classes of commensurable subgroups.

Two subgroups I' and I in a group are said to be commensurable if
"INl <ooand [IM:I'nl’| < oco.

Commensurability is an equivalence relation on the set of subgroups of the
group G. We will denote it by the symbol “~".



