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Preface

Matrix analysis is a research field of basic interest and has applications in
scientific computing, control and systems theory, operations research, mathe-
matical physics, statistics, economics and engineering disciplines. Sometimes
it is also needed in other areas of pure mathematics.

A lot of theorems in matrix analysis appear in the form of inequalities.
Given any complex-valued function defined on matrices, there are inequalities
for it. We may say that matrix inequalities reflect the quantitative aspect of
matrix analysis. Thus this book covers such topics as norms, singular values,
eigenvalues, the permanent function, and the Lowner partial order.

The main purpose of this monograph is to report on recent developments
in the field of matrix inequalities, with emphasis on useful techniques and
ingenious ideas. Most of the results and new proofs presented here were ob-
tained in the past eight years. Some results proved earlier are also collected
as they are both important and interesting.

Among other results this book contains the affirmative solutions of eight
conjectures. Many theorems unify previous inequalities; several are the cul-
mination of work by many people. Besides frequent use of operator-theoretic
methods, the reader will also see the power of classical analysis and algebraic
arguments, as well as combinatorial considerations.

There are two very nice books on the subject published in the last decade.
One is Topics in Matriz Analysis by R. A. Horn and C. R. Johnson, Cam-
bridge University Press, 1991; the other is Matriz Analysis by R. Bhatia,
GTM 169, Springer, 1997. Except a few preliminary results, there is no over-
lap between this book and the two mentioned above.

At the end of every section I give notes and references to indicate the
history of the results and further readings.

This book should be a useful reference for research workers. The prerequi-
sites are linear algebra, real and complex analysis, and some familiarity with
Bhatia’s and Horn-Johnson’s books. It is self-contained in the sense that de-
talled proofs of all the main theorems and important technical lemmas are
given. Thus the book can be read by graduate students and advanced under-
graduates. I hope this book will provide them with one more opportunity to
appreciate the elegance of mathematics and enjoy the fun of understanding
certain phenomena. 1
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1. Inequalities in the Lowner Partial Order

Throughout we consider square complex matrices. Since rectangular matrices
can be augmented to square ones with zero blocks, all the results on singular
values and unitarily invariant norms hold as well for rectangular matrices.
Denote by M,, the space of n x n complex matrices. A matrix A € M,, is often
regarded as a linear operator on C* endowed with the usual inner product
(z,y) = 322595 for x = (z;),y = (y;) € C". Then the conjugate transpose
A* is the adjoint of A. The Euclidean norm on C" is ||z]| = (z,z)Y/2. A
matrix A € M, is called positive semidefinite if

(Az,z) >0 for all z € C". (1.1)

Thus for a positive semidefinite A, (Az,z) = (z, Az). For any A € M,, and
z,y € C", we have

-k

4(Az,y) = ) *(A(z + i*y),z + i*y),

ol
w }\Mw
[ws]

4z, Ay) = ) "z + i*y, Alz + i*y))
k=0

where ¢ = v/~1. It is clear from these two identities that the condition (1.1)
implies A* = A. Therefore a positive semidefinite matrix is necessarily Her-
mitian.

In the sequel when we talk about matrices A, B, C, ... without specifying
their orders, we always mean that they are of the same order. For Hermitian
matrices G, H we write G < H or H > G to mean that H — G is positive
semidefinite. In particular, H > 0 indicates that H is positive semidefinite.
This is known as the Lowner partial order; it is induced in the real space of
(complex) Hermitian matrices by the cone of positive semidefinite matrices.
If H is positive definite, that is, positive semidefinite and invertible, we write
H>0.

Let f(t) be a continuous real-valued function defined on a real inter-
val 2 and H be a Hermitian matrix with eigenvalues in 2. Let H =
Udiag(A1, ..., An)U* be a spectral decomposition with U unitary. Then the
Sfunctional calculus for H is defined as




—.

2 1. The Lowner Partial Order ‘

F(H) = Udiag(f(\y), ..., f(A))U™. (1.2) i

This is well-defined, that is, f(H) does not depend on particular spectral
decompositions of H. To see this, first note that (1.2) coincides with the usual
polynomial caleulus: If f(t) = Z;ZO c;td then f(H) = Z;:O c;H?. Second, by
the Weierstrass approximation theorem, every continuous function on a finite |
closed interval {2 is uniformly approximated by a sequence of polynomials.
Here we need the notion of a norm on matrices to give a precise meaning of
approximation by a sequence of matrices. We denote by || Al the spectral
(operator) norm of A: ||A|lo = max{||Az|| : ||lz|| = 1,z € C*}. The spectral
norm is submutltiplicative: || AB|loo < || Allooll Blloo. The positive semidefinite
square root H'/2 of H > 0 plays an important role.

Some results in this chapter are the basis of inequalities for eigenvalues,
singular values and norms developed in subsequent chapters. We always use
capital letters for matrices and small letters for numbers unless otherwise
stated.

1.1 The Lowner-Heinz inequality

Denote by I the identity matrix. A matrix C is called a contraction if C*C <
I, or equivalently, ||C]lc < 1. Let p(A) be the spectral radius of A. Then
p(A) < || Alloo. Since AB and BA have the same eigenvalues, p(AB) = p(BA).

Theorem 1.1 (Léwner-Heinz) If A > B >0 and 0 < r <1 then
A" > B". (1.3)

Proof. The standard continuity argument is that in many cases, e.g., the
present situation, to prove some conclusion on positive semidefinite matrices

it suffices to show it for positive definite matrices by considering A+, ¢ | 0.
Now we assume A > 0.

Let A be the set of those r € [0,1] such that (1.3) holds. Obviously
0,1 € A and A is closed. Next we show that A is convex, from which follows
A = [0,1] and the proof will be completed. Suppose s,¢t € A. Then

A~s/QBsA—s/2 <1, A—t/QBtA—t/Q <TI
or equivalently |[Bs/2A7/2||, <1, ||[BY/2A7%/2||, < 1. Therefore
“A—(s+t)/4B(S+t)/2A~(8+t)/4“00 = p(A~(S+t)/4B(SH)/?A—(SH)/‘!)
_ p(A—s/ZB(s+t)/2A-«t/2)

— ”A~s/QB(s+t)/2AAt/2”OO
— ”(BS/QA—5/2)*(Bt/2AAt/2)Hoo
”Bs/2A~s/2Hoo”Bt/QA—t/Q”OO

<
<1
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Thus A—(+8/4Be+8)/2 4—(s+8)/4 < T and consequently Bs+8)/2 < Als+8)/2,
ie., (s +t)/2 € A. This proves the convexity of A. |

How about this theorem for r > 17 The answer is negative in general.

The example
21 _f10 2 po_ [43
N R I b

shows that A > B >0 % A? > B2,

The next result gives a conceptual understanding, and this seems a typical
way of mathematical thinking.

We will have another occasion in Section 4.6 to mention the notion of a C*-
algebra, but for our purpose it is just M,,. Let .A be a Banach space over C. If
A is also an algebra in which the norm is submultiplicative: || AB| < [|All || Bl
then A is called a Banach algebra. An snvolution on A is a map A — A* of
A into itself such that for all A,B ¢ Aand aa € C

(i) (A*)* = A; (i) (AB)* = B*A*; (iii) (aA+ B)* = aA* + B*.
A C*-algebra A is a Banach algebra with involution such that
|A* Al = |A||> for all Ae A.

An element A € A is called positive if A = B*B for some B € A.

It is clear that M, with the spectral norm and with conjugate transpose
being the involution is a C*-algebra. Note that the Lowner-Heinz inequality
also holds for elements in a C*-algebra and the same proof works, since every
fact used there remains true, for instance, p(AB) = p(BA).

Every element T" € A can be written uniquely as T'= A 4 +B with A, B
Hermitian. In fact A = (T'+T*)/2, B = (T — T*)/2i. This is called the
Cartesian decomposition of T

We say that A is commutative if AB = BA for all A, B ¢ A.

Theorem 1.2 Let A be a C*-algebra andr > 1. fA> B >0,A,Bec A
implies A™ > BT", then A is commutative.

Proof. Since r > 1, there exists a positive integer k such that 7% > 2. Suppose
A > B > 0. Use the assumption successively k times we get A" > B
Then apply the Lowner-Heinz inequality with the power 2/r¥ < 1 to obtain
A% > B2, Therefore it suffices to prove the theorem for the case r —= 2.

For any A, B > 0 and ¢ > 0 we have A+ ¢B > A. Hence by assumption,
(A + €eB)? > A?. This yields AB + BA + ¢B? > 0 for any € > 0. Thus

AB+ BA>0 for all A, B >0. (1.4)

Let AB = G +iH with G, H Hermitian. Then (1.4) means G > 0. Applying
this to A, BAB,
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A(BAB)=G? - H* + i(GH + HG)
gives G2 > H?. So the set
I's{a>1:G*>aH?for all A,B >0 with AB=G +iH}

where G + iH is the Cartesian decomposition, is nonempty. Suppose I is
bounded. Then since I' is closed, it has a largest element A. By (1.4) H?(G?—
AH?) + (G? = AH*)H? >0, i.e.,

G?H? + H*G? > 2AH*. (1.6)

From (1.5) we have (G? — H*)? > \(GH + HG)?, ie.,

G4 +H4 _ (G2H2 +H2G2)
> MGH?*G + HG*H + G(HGH) + (HGH)G].

Combining this inequality, (1.6) and the inequalities GH?G > 0, G(HGH)+
(HGH)G > 0 (by (1.4) and G > 0), HG?H > AH* (by the definition of \)
we obtain

G* > (\? 20 - 1)H.

Then applying the Léwner-Heinz inequality again we get
G? > (A2 42x—-1)/2H2

for all G, H in the Cartesian decomposition AB = G + iH with A, B > 0.
Hence (A? + 2X —1)/2 € I, which yields (A2 + 2\ — 1)1/2 < X by definition.
Consequently A < 1/2. This contradicts the assumption that A > 1. So
I' is unbounded and G? > aH? for all o > 1, which is possible only when
H = 0. Consequently AB = BA for all positive A, B. Finally by the Cartesian
decomposition and the fact that every Hermitian element is a difference of
two positive elements we conclude that XY = Y X for all X,Y € A. O

Since M, is noncommutative when n > 2, we know that for any r > 1
there exist A > B> 0but A™ ¥ B".

Notes and References. The proof of Theorem 1.1 here is given by G. K.
Pedersen [79]. Theorem 1.2 is due to T. Ogasawara [77].
1.2 Maps on Matrix Spaces

A real-valued continuous function f(t) defined on a real interval §2 is said to
be operator monotone if

A<B implies f(A)< f(B)




1.2 Maps on Matrix Spaces 5

for all such Hermitian matrices A, B of all orders whose eigenvalues are con-
tained in £2. f is called operator conver if for any 0 < A < 1,

fAA+ ({1 =X)B) < Af(A) + (1 -N)f(B)

holds for all Hermitian matrices A, B of all orders with eigenvalues in §2. f
is called operator concave if —f is operator convex.

Thus the Lowner-Heinz inequality says that the function f(¢) =t¢7, (0 <
r < 1) is operator monotone on [0, 00). Another example of operator mono-
tone function is log ¢t on (0, o0) while an example of operator convex function
is g(t) =t" on (0,00) for —1 <r<0orl<r <217, p.147].

If we know the formula

sinrmw r—1

"= / i ds (0<7r<1)
is 0 S+t

then Theorem 1.1 becomes quite obvious. In general we have the following
useful integral representations for operator monotone and operator convex
functions. This is part of Léwner’s deep theory [17, p.144 and 147] (see also
[32]).

Theorem 1.3 If f is an operator monotone function on [0,00), then there
exists a positive measure p on [0, 00) such that

FO) = o+ Bt+ /Ooo %dp(s) (1.7)

where o 45 a real number and 3 > 0. If g is an operator convex function on
[0, 00) then there exists a positive measure u on [0, 00) such that

2

s+t

g(t) = a+ Bt + 4% + /000 du(s) (1.8)

where o, B are real numbers and v > 0.

The three concepts of operator monotone, operator convex and operator
concave functions are intimately related. For example, a nonnegative contin-
uous function on [0,00) is operator monotone if and only if it is operator
concave [17, Theorem V.2.5).

A map @ : M, — M, is called positive if it maps positive semidefinite
matrices to positive semidefinite matrices: A > 0 = $(A) > 0. Denote by I,,
the identity matrix in M,,. @ is called unital if (1) = 1I,.

We will first derive some inequalities involving unital positive linear maps,
operator monotone functions and operator convex functions, then use these
results to obtain inequalities for matrix Hadamard products.

The following fact is very useful.

Lemma 1.4 Let A > 0. Then
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A B

if and only if the Schur complement C — B*A 1B > 0.
Lemma 1.5 Let ¢ be a unital positive linear map from M,, to M,,. Then
d(A?) > P(A)? (A >0), (1.9)
(AT >e(A)"T (A>0). (1.10)
Proof. Let A = Z;n:1 A;E; be the spectral decomposition of A, where
Aj 2 0(j = 1,...,m) are the eigenvalues and E; (j = 1,...,m) are the

corresponding eigenprojections of rank one with Z;";l E; = I,,,. Then since

A? = > j=1 A3E; and by unitality I, = (I ) = E;"Zl P(E;), we have

)-S5 (4 s

where ® denotes the Kronecker (tensor) product. Since

1),
ij]zo

and by positivity @(E;) >0 (5 = 1,...,m), we have

1A
[/\j )\é} ® (E;) 20,

7 =1,...,m. Consequently

[qsl(r”m qf((j%] 20

which implies (1.9) by Lemma 1 4.
In a similar way, using
A1
{qu}ZO
J

[@(A) I ]20

we can conclude that

I, ®(A™1)
which implies (1.10) again by Lemma 1.4. a

Theorem 1.6 Let & be a unital positive linear map from M, to M, and f
an operator monotone function on [0,00). Then for every A > 0,
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f(@(A4)) =2 2(f(A)).

Proof. By the integral representation (1.7) it suffices to prove
D(A)[sI +D(A)] " > D[A(s] + A)7Y], s>0.

Since A(sI + A)™! = I — s(sI + A)™! and similarly for the left side, this is
equivalent to
[@(sI + A)] " < D[(s] + A)7Y

which follows from (1.10). a
Theorem 1.7 Let ¢ be a unital positive linear map from M,, to M,, and g

an operator convez function on [0,00). Then for every A > 0,

9(2(A)) < o(g(A)).

Proof. By the integral representation (1.8) it suffices to show
P(A)? < P(A?) (1.11)

and
! S(A)?[s] + D(A)]| 7 < B[A%(s] + A7, s>o0. (1.12)

(1.11) is just (1.9). Since
AT+ A7t = A—sT+ s(s + A) L,

B(A)*[s] + B(A)] 1 = B(A) — sI + s[s] + B(A)]"?
(1.12) follows from (1.10). This completes the proof. a

bl

Since fi(t) = ¢" (0 < r < 1) and f(t) = logt are operator monotone
functions on [0, 00) and (0,0) respectively, g(t) = t" is operator convex on

(0,00) for -1 <r <0and 1 < r < 2, from Theorems 1.6, 1.7 we get the
following corollary.

Corollary 1.8 Let @ be a unital positive linear map from M,, to M,,. Then
PAT) < P(A), A20, 0<r<U

D(AT) 2 H(A), A>0, -1<r<0orl<r<2
P(log A) < log(®(4)), A>0.

Given A = (ay;), B = (b;;) € M, the Hadamard product of A and B is
defined as the entry-wise product: Ao B = (asjbi;) € M,,. For this topic see
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[52, Chapter 5]. We denote by Ala] the principal submatrix of A indexed by
a. The following simple observation is very useful.

Lemma 1.9 For any A,B € M,,, Ao B = (A® B)[a] where « = {1,n +
2,2n+3,...,n%}. Consequently there is a unital positive linear map ¢ from
M2 to M, such that 8(A® B) = Ao B for all A,B € M,,.

As an illustration of the usefulness of this lemma, consider the following
reasoning: If A, B > 0, then evidently A ® B > 0. Since Ao B is a principal
submatrix of A ® B, Ao B > 0. Similarly A o B > 0 for the case when
both A and B are positive definite. In other words, the Hadamard product
of positive semidefinite (definite) matrices is positive semidefinite (definite).
This important fact is known as the Schur product theorem.

Corollary 1.10

AToB"<(AoB), AB>0, 0<r<I; (1.13)
A"oB" > (AoB)", AB>0, -1<r<0orl<r<2; (1.14)
(logA +logB)oI <log(AcB), A B=>0. (1.15)

Proof. This is an application of Corollary 1.8 with A there replaced by A B
and @ being defined in Lemma 1.9.

For (1.13) and (1.14) just use the fact that (A ® B)! = A' ® B! for real
number t. See [52] for properties of the Kronecker product.

For (1.15) we have

I

d d
log(A ® B) A® B)|imo = E(At@)Bt)lt:O

7
= (log A) ® I + I & (log B).

This can also be seen by using the spectral decompositions of 4 and B. 0O

We remark that the inequality in (1.14) is also valid for A, B > 0 in the
case 1 <r < 2.

Given a positive integer k, let us denote the kth Hadamard power of
A= (a;) € M, by A® = (afj) € M,,. Here are two interesting consequences
of Corallary 1.10: For every positive integer k,

(ATE < (A®)y - A>0, 0<r<;

(ANYF) > (A 450, ~1<r<0orl <r<2.

Corollary 1.11 For A, B > 0, the function f(t) = (At o BY)1/t s increasing
on [1,00),1.e.,

(Ao BHYs < (Ao BHYYE 1< s <t
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Proof. By Corollary 1.10 we have
Ao B° < (At OBt)S/t.

Then applying the Lowner-Heinz inequality with the power 1/s yields the
conclusion. O

Let P, be the set of positive semidefinite matrices in M,,. A map ¥ from
P, x P, into P, is called jointly concave if

WA+ (1= N)B,AC+ (1 —A)D) > MW(A,C) + (1 - \¥(B, D)

forall A,B,C,D >0and 0 < XA < 1.
For A, B > 0, the parallel sum of A and B is defined as

A:B=(A"'+B Y1

Note that A: B=A—-A(A+B) 'Aand 2(A: B) = {(A '+ B~ 1)/2}lis
the harmonic mean of A, B. Since A : B decreases as A, B decrease, we can
define the parallel sum for general A, B > 0 by

A:B=lim{(A+el)! +(B+ )71}

Using Lemma 1.4 it is easy to verify that

e |A+B A
A.B—max{XEO.{ A A_X}ZO}

where the maximum is with respect to the Lowner partial order. From this
extremal representation it follows readily that the map (4, B) — A : B is
jointly concave.

Lemma 1.12 For 0 < r < 1 the map
(A,B)+— A" o BT
is jointly concave in A, B > 0.

Proof. It suffices to prove that the map (A4, B) — A" ® B! is jointly
concave in A, B > 0, since then the assertion will follow via Lemma 1.9.

We may assume B > 0. Using A" ® B!™" = (A® B~1)"(I ® B) and the
integral representation

sinrm [ g7 1¢
tr = d 0
™ /{; s+t s (0<r<d)

we get
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sinrmw

AT ® Bl—r —

™

/ sSTHAR B YA®B '+ sl )~ (I® B)ds.
0

Since A ® B~! and I ® B commute, it is easy to see that
(AR BTYWA®B ' +sIo)!I®B)=(s"'Ax1): (I® B).

We know that the parallel sum is jointly concave. Thus the integrand above
is also jointly concave, and so is A” ® B'~". This completes the proof. ]

Corollary 1.13 For A,B,C,D >0 and p,q > 1 with 1/p+ 1/q = 1,

AoB+CoD < (AP 4+ CP)V/Po (BY+ DU)V/a,

Proof. This is just the mid-point joint concavity case A = 1/2 of Lemma
1.12 with r = 1/p. ]

Let f(z) be a real-valued differentiable function defined on some real
interval. We denote by Af(z,y) = [f(z) - f(y)]/(x—y) the difference quotient
where Af(z,z) = f'(x).

Let H(t) € M, be a family of Hermitian matrices for ¢ in an open real
interval (a,b) and suppose the eigenvalues of H(t) are contained in some
open real interval 2 for all ¢ € (a,b). Let H(t) = U(t)A(t)U(t)* be the
spectral decomposition with U(t) unitary and A(t) = diag(A;(t),..., \,(2)).
Assume that H(t) is continuously differentiable on (a,b) and f : 2 — R is
a continuously differentiable function. Then it is known [52, Theorem 6.6.30]
that f(H(t)) is continuously differentiable and

% (H(£)) = U{[AS u(0), A ()] o [U&)* H' (U ()] }U (2)*

Theorem 1.14 For A,B >0 and p,q > 1 with 1/p+1/g=1,

AoB < (AP o )V/P(Bio )1,

Proof. Denote
C=(APo)V/P = diag(A,. .., An),

D= (Biol)l/e =diag(py, ..., p1n).

By continuity we may assume that \; # Aj and p; # py for 1 # 5.
Using the above differential formula we compute

i(cp +tAPYPL = X o AP
dt o
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and 4
— (DT +tBN)YY =Y oB?
dt 10
where X = (z;;) and Y = (y;;) are defined by
zij = (A = N)(M = AD)7! for i # j and @y =p~ A7,
yiy = (i — ) (pf — uj)‘l for i j and gy =q 'y "
By Corollary 1.13

CoD+tAoB < (CP+tAP)/Po (DI 4 tBI)Y/4
for any ¢t > 0. Therefore, via differentiation at ¢t = 0 we have
AoB < %(C”—kt/{”)l/p o (D? +th)1/q|t:0
=XoAPoD+CoYoR?
=(Xol)(APoND +C(Y o I) (B0 1)

=p !CYP(AP o I)D + ¢ 'CD 4(Bio])
= (AP o H)VP(BI o I)1/4.

This completes the proof. O

We will need the following result in the next section and in Chapter 3.
See [17] for a proof.

Theorem 1.15 Let f be an operator monotone function on [0,00), g an
operator convex function on [0, 00) with g(0) < 0. Then for every contraction
C,ie., ||Clloo <1 and every A > 0,

fICTAC) > C*f(A)C, (1.16)

9(C*AC) < C*g(A)C. (1.17)

Notes and References. As already remarked, Theorem 1.3 is part of the
Lowner theory. The inequality (1.16) in Theorem 1.15 is due to F. Hansen
[43] while the inequality (1.17) is proved by F. Hansen and G. K. Pedersen
[44]. All other results in this section are due to T. Ando [3, 8].

1.3 Inequalities for Matrix Powers

The purpose of this section is to prove the following result.




