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Preface

The use of shallow geothermal energy has increased enormously over the past
ten years. As the number of geothermal energy installations has risen, so has
the number of technical developments in the field. There have been cases of
damage in connection with the construction and operation of geothermal
energy systems which have attracted much attention in the media. In particular,
the cases of damage that have become public show that drilling to depths of
several hundred metres is a technical activity that calls for responsible
procedures in the sense of quality-assured design, construction and operation
of the systems. Avoiding damage caused by shallow geothermal energy
installations is a top priority for sustainable geothermal energy uses, especially
when bodies of groundwater have to be protected against adverse effects. The
recommendations in this book should be regarded as contributions to the
quality-assured realisation of such systems. One of the aims of the Geothermal
Energy Study Group at the specialist Hydrogeology Section of the German
Geological Society (DGGV) and the Engineering Geology Section of both the
German Geotechnical Society (DGGT) and the DGGV is to promote the
widespread use of geothermal energy as an environment-friendly energy
source while prioritising the protection of bodies of water. The authors as
well as the DGGV and the DGGT have conceived these recommendations as
advice and not as a set of technical regulations in the sense of a standard.
Therefore, the recommendations of the Geothermal Energy Study Group
include a number of textbook-like passages and much information on the
legislation that affects approvals and permits. At the time of going to print, the
preparation of a standard for shallow geothermal energy was not in sight: such
a standard is, however, still regarded as essential.

The authors and their assistants in the study group are hydrogeologists,
engineering geologists and engineers from design consultants, the construc-
tion industry, the building materials industry, authorities and universities.
They drew up the recommendations over a number of years and all were well
aware of the fact that some of the content could certainly trigger controversy
in technical circles.

In order to guarantee the technical quality of the recommendations of the
Geothermal Energy Study Group, the content was subjected to a peer review
process. Prof. Dr. Ingrid Stober (Freiburg Regional Authority), Prof. Dr. Rolf
Bracke (International Geothermal Center, Bochum) and Prof. Dr. Dmitry V.
Rudakov (National Mining University, Dnipropetrovsk) undertook this
important and demanding task, approaching it from different perspectives.
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Their remarks and comments were carefully considered in the preparation of
this current edition of the recommendations.

Besides the peer review process, the publishers made the recommendations
publicly available on the Internet for three months. Anybody who was
interested was invited to submit their remarks, comments and suggestions
for improvements within those three months. The authors read and evaluated
every single contribution received, which resulted in many improvements
being made to the text and illustrations. We are very grateful to all who made
contributions to the work of the study group in this way.

The authors of the recommendations are as follows:
Spokesman for the study group

Prof. Dr. rer. nat. Ingo Sass

Institute of Applied Geothermal Science & Technology
Technische Universitidt Darmstadt

Schnittspahnstr. 9

64287 Darmstadt

Deputy spokesman
Dr. rer. nat. Dirk Brehm
BGU, Bielefeld

Permanent members of the study group

Prof. Dr. rer. nat. Wilhelm Georg Coldewey
Institute of Geology & Palaeontology
Westfilische Wilhelms-Universitit Miinster

Dr. rer. nat. Jorg Dietrich
HeidelbergCement, Enningerloh

Dr. rer. nat. Rainer Klein
boden & grundwasser, Amtzell

Dipl.-Min. Torsten Kellner
Berlin

Dipl.-Ing. Dipl.-Geol. Bernd Kirschbaum
Federal Environment Agency, Dessau



Dipl.-Geol. Clemens Lehr
Geotechnisches Umweltbiiro Lehr. Bad Nauheim

Dipl.-Geol. Adam Marek
Environment Department. Bielefeld

Dipl.-Ing. Philipp Mielke
Institute of Applied Geothermal Science & Technology
Technische Universitit Darmstadt

Prof. Dr. rer. nat. Lutz Miiller
Environmental Engineering Department
Ostwestfalen-Lippe University of Applied Sciences, Hoxter

Dr. rer. nat. Bjoérn Panteleit
Geological Services Agency for Bremen (GDfB)

Dipl.-Geol. Stefan Pohl
geo consult POHL, Bendorf

Dipl.-Geol. Joachim Porada
Porada GeoConsult GmbH & Co. KG, Harsefeld

Dipl.-Ing. Stefan Schiessl
TERRASOND GmbH & Co. KG, Giinzburg

Dr. rer. nat. Marec Wedewardt
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