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Preface

Nonlinear Time Series Analysis with R joins the chorus of voices recommending ‘get-
ting to know your data’ as an essential preliminary evidentiary step in scientific in-
quiry. Time series are often highly fluctuating, with a random appearance. Observed
volatility is commonly attributed to exogenous random shocks to stable real-world
systems. Consequently, investigators are driven to reproduce volatility with a variety
of linear-stochastic and probabilistic methods. However, breakthroughs in nonlinear
dynamics raise another possibility: highly complex dynamics can emerge endogenously
from astoundingly parsimonious deterministic models.

Nonlinear time series analysis (NLTS) is a collection of empirical tools that allow
practitioners to diagnose whether observed data are most likely generated by stochas-
tic or deterministic dynamics. In particular, practitioners can use NLTS in an attempt
to reconstruct, characterize and model real-world dynamics from a single time series
or multiple causally interactive time series. This information can be used, along with
scientific principles and other expert information, to guide the specification of mech-
anistic models used to build theory or to support high-stakes public policy. Models
used for public policy are increasingly subjected to formal government audit to ascer-
tain how well they correspond to reality. The compatibility of audited models with
NLTS-detected dynamics offers evidence of proper model specification.

This book targets students and professionals in physics, engineering, biology, agri-
culture, and economics and other social sciences. Our major objectives are to put key
concepts of NLT'S — developed in the mathematical physics literature — within the op-
erational reach of non-mathematicians with limited knowledge of nonlinear dynamics,
and in this way to pave the way for NLTS to be adopted in the conventional empirical
toolbox and core coursework of other disciplines. Consistent with modern trends in
university instruction, the book makes readers active learners with hands-on computer
experiments in R code directing them through NLTS methods. The computer code is
explained in detail so that readers can adjust it for use in their own work. The book
also provides readers with an explicit framework — condensed from sound empirical
practices recommended in the literature — that proposes a strategy for implementing
NLTS in real-world data diagnostics. Practitioners become ‘data detectives’, accumu-
lating hard empirical evidence directing scientific inquiry.

We used R 3.3.1 and the following packages to construct the code in this book:
animation 2.5; boot 1.3-18; crqa 1.0.6; deSolve 1.12; extRemes 2.0-7; fields 8.4-1;
fractal 2.0-1; glmnet 2.0-5; gplots 3.0.1; graphics 3.3.1; igraph 1.0.1; MESS 0.4-3;
mpoly 1.0.3; multispatialCCM 1.0; nonlinearTseries 0.2.3; pdc 1.0.3; pdist 1.2;

phaseR 1.3; plotrix 3.6-3; ppls 1.6-1; psych 1.7.3.21; rgl; Rssa 0.13-1;
scatterplot3d 0.3-37; stats 3.5.0; tseriesChaos 0.1-13; tseriesEntropy 0.6-0
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1

Why Study Nonlinear Time Series
Analysis?

'"Data'data'data!" he cried impatiently. "I can't make bricks without clay."’
Arthur Conan Doyle, The Adventure of the Copper Beeches

1.1 Introduction

Nonlinear time series analysis (NLTS) requires time series data on only a single variable
to diagnose, reconstruct, characterize and model the dynamics of the real-world system
generating the data. This is possible because any single variable in an interdependent
dynamic system encodes the history of its interactions with other system variables. The
famous naturalist John Muir (1911) intuited this result in the early twentieth century,
observing that: ‘When we try to pick something up by itself, we find it hitched to
everything else in the universe.’

Perhaps the most compelling reason for studying NLTS is it that facilitates scien-
tific inquiry. However, demonstrating how NLTS data diagnostics fit into the scientific
method is complicated by the lack of consensus regarding what that method is in the
first place. The Stanford Encyclopedia of Philosophy concludes that ‘there is not any
unique, easily described scientific method’ because ‘scientific activity varies so much
across disciplines, times, places, and scientists that any account which manages to unify
it all will either consist of overwhelming descriptive detail, or trivial generalizations’
(Andersen and Hepburn, 2016).

A conventional view is that scientific inquiry cycles between inductive reasoning
that converts detected regularities in data into testable hypotheses, and deductive rea-
soning that elevates those hypotheses to theory whose predicted consequences are cor-
roborated by further observation or experimentation (Andersen and Hepburn, 2016).
This view is roundly criticized as an overly simplistic representation of how science
converts experience into knowledge. For one thing, there has been unending disagree-
ment over epistemic issues, including the proper balance between empirical observation
and deductive reasoning on the one hand and the requirements of corroboration on the
other. Moreover, the view excludes important human, social and political aspects of
science, including the talent, imagination and objectivity of scientists; the benefits of
transdisciplinary collaboration; and disincentives created by science and political com-
munities that discourage researchers from undertaking truly novel research projects

Nonlinear Time Series Analysis with R. Ray Huffaker, Marco Bittelli and Rodolfo Rosa, Oxford University Press (2017).
© Ray Huffaker, Marco Bittelli and Rodolfo Rosa. DOI: 10.1093/0s0/9780198782933.001.0001



2 Why Study Nonlinear Time Series Analysis?

(Haack, 1999; Geman and Geman, 2016). Also, it does not account for how science
progresses cataclysmically as new paradigms overthrow old ones in scientific revolu-
tions (Kuhn, 1962). The lack of consensus leaves us between two extremes: the narrow
epistemic framework of conventional views and the nihilistic positions that science is
merely politics with no epistemic authority.

Haack (1999) provides a middle ground:

‘An adequate account of scientific knowledge and scientific inquiry must acknowledge a subtle
interplay of logical, personal, and social aspects. The interplay begins at the beginning, of
course, with talented individuals coming up with imaginative conjectures on which others
build and which are subject to the scrutiny of the whole relevant community, and it is present
at every stage. The warrant of any empirical proposition depends in part on experimental
evidence, i.e., on what some individual observe(s) see(s) or hear(s), etc, and so, on how
justified others are in thinking the observer(s) reliable.’

The chief epistemic value of this middle ground is a ‘respect for evidence’ that meets
general standards of good inquiry, namely ‘good, strong, supportive evidence and
... well-conducted, honest, thorough, imaginative inquiry’ (Haack, 1999).

Data provide an evidentiary portal to the real world to which there is only limited
access. For example, Charles Darwin consolidated several months of studying numerous
marine and terrestrial samples collected in the Galapagos into his famous sketch of
the evolutionary tree (Berra, 2009). In another example, Leonardo da Vinci compiled
a lifetime of observing nature into notebooks explaining diverse behaviours, including
water and sediment movement in river systems, waves in ponds, sound waves in air, and
even whether spirits can speak (da Vinci, 1519). The contributions of both scientists
are especially renowned because they detected patterns that were not obvious in the
data, and processed that information into astounding knowledge of systematic natural
behaviour that has withstood the test of time.

Haack (1999) sets ‘realism’ as the goal of scientific inquiry. The results of scientific
inquiry must agree with reality if they are to be put to reliable use. For example,
policymakers reasonably expect that theory supporting high-stakes public policy ad-
equately represents the real world that they are charged with regulating. Otherwise,
policies ‘leave the real problem unaddressed, waste resources, and impeded learning’
(Saltelli and Funtowitz, 2014). Recently, a 2010 US Congressional special hearing,
Building a Science of Economics for the Real World (US Congress Subcommittee on
Science and Technology, 2010), criticized the performance of macroeconomic models
for failing to reproduce temporal patterns of booms and busts observed in the 2008
financial crisis. Congress concluded that ‘if major crises are a recurrent feature of the
economy then our models should incorporate this possibility’, and expressed frustra-
tion that ‘because our experts’ way of looking at the economy left them blind to the
crisis that was building, we were unprepared to deal with the crisis’. Most ominously,
Congress broadly questioned why ‘we continue to rely upon [theoretical models| for so
many critical decisions, so much practical policy advice’.

An economist empanelled at the 2010 hearing recommended that policy models
be formally audited by the National Science Foundation. An earlier recommendation
by Oreskes et al. (1994) would place the burden on the modeller ‘to demonstrate the
degree of correspondence between the model and the material world it seeks to repre-
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sent’ when ‘public policy and public safety are at stake’. The European Commission’s
Joint Research Centre conducts a formal audit of models used to assess the impacts
of EU initiatives, legislation and policy.

NLTS facilitates well-conducted evidentiary scientific inquiry by providing a col-
lection of mathematically rigorous procedures that help practitioners to extract infor-
mation on real-world dynamics from observed data that often have a complex, highly
variable and random appearance. Applied science disciplines conventionally presume
that apparent randomness of volatile data must result from exogenous shocks to inher-
ently stable dynamic systems (Feder, 1979; Uusitalo et al., 2015), and turn to stochastic
methods without further justification. Alternatively, the theory of randomness teaches
us that mathematically random output can be generated by both physically random
(indeterministic) and physically nonrandom (deterministic) processes (Horan, 1994),
and breakthroughs in nonlinear dynamics demonstrate that parsimonious determin-
istic models can produce surprisingly irregular and complex behaviour (Glendinning,
1994).

The possibility of deterministic volatility should not be surprising. Many essential
biophysical processes exhibit strong patterns of dynamic behaviour to align with en-
vironmental regularities. Eating and sleeping in animals (including humans), as well
as leaf movements and photosynthetic reactions in plants, exhibit built-in circadian
(roughly 24-hour) rhythms that sunlight adjusts to the local environment. Tidal tran-
sitions exhibit a tidal (12.4-hour) rhythm, and tidal amplitudes a lunar (29.5-day)
rhythm. Climate exhibits regular (diurnal and seasonal) cycles, quasi-periodic cycles
(e.g. El Nino) and highly irregular cycles (e.g. volcanic winters).

NLTS allows us to replace presumption of stochasticity with rigorous empirical
evidence. The data themselves can serve as our initial guide for ascertaining whether
observed volatility is driven by stochastic or deterministic nonlinear real-world dynam-
ics. This distinction matters critically both for theory and its practical application. For
example, the efficient-markets hypothesis in economics is based on the presumption
that market instability results from exogenous shocks to otherwise stable markets.
The hypothesis holds that markets tend to equilibrate in response to these shocks
as economic agents process all available information in adjusting supply to demand
conditions (Fama, 1970). Observed volatility reflects corrective supply and demand ad-
justments. The hypothesis supports laissez faire market policies that do not interfere
with corrective adjustments.

The failure of the efficient-markets hypothesis to predict the 2008 financial crisis
awoke the profession to another possibility: real-world markets do not naturally equi-
librate but may be inherently unstable. Consequently, The Economist recommended
that ‘like physicists, [economists| should study instability instead of assuming that
economies naturally self-correct’ (Economist, 2016a). In striving to understand the
economics of market instability, economists returned to the earlier work of Minsky
(1992), who developed the financial instability hypothesis explaining how financial
booms systematically breed their own busts (see also (Economist, 2016b)). According
to this hypothesis, markets do not provide a natural corrective mechanism, and public
intervention should be geared to smoothing systematic boom and bust cycles, and
buffering their negative impacts on consumers and producers (Huffaker et al., 2016a).
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The 2008 crisis led The Economist to endorse a more evidentiary approach for

the profession in an article entitled If Economists Reformed Themselves (Economist,
2016¢):

‘Economists are good at reducing a complicated world to a few assumptions, then adding
bells and whistles to make their models more realistic. But problems arise when they mistake
the map for the territory ...In future, big data and new “machine learning” techniques could
help test the relative power of competing theories.’

1.2 Nonlinear Dynamics and a Strategy for Applying NLTS

Sophisticated application of NLTS requires a firm theoretical foundation in basic non-
linear dynamics that we provide in Part 1 of this book (Chapters 2-5). We investigate
how complex behaviour can arise from a simple deterministic nonlinear specification
(Chapter 2), how system dynamics can be reconstructed from a single solution variable
with phase space reconstruction techniques (Chapter 3) and how tools from nonlinear
dynamics can be used to measure characteristics of reconstructed dynamics (Chapters
4 and 5).

Phase space reconstruction is the centrepiece of NLTS (Kantz and Schreiber, 1997).
Phase space records the level of system (state) variables at each point in time. For
example, assume that a dynamic system is fully expressed with two state variables
x; and y; that change with time t. Phase space plots y; against x;, so that one point
could be their values in the year 2000: (2000, ¥2000). Running a line through this point
and past and future points results in a phase space trajectory depicting the evolution
of the system through time. In dissipative dynamic systems, trajectories converge to a
subset of phase space where they oscillate aperiodically along an attractor — a geomet-
ric structure with noticeable regularity — forever after (Brown, 1996) . Consequently,
an attractor encapsulates the long-term dynamic behaviour of the system. Prior to the
1980s, researchers assumed that data on all system variables were needed to construct
phase space representations of system dynamics. This is problematic in practice be-
cause we cannot reasonably identify all of the variables at work in real-world dynamic
systems, and we might not be able to adequately measure some variables that we
can identify. Researchers then discovered that phase space dynamics could be recon-
structed from time series data on a single variable using delay coordinates (Breeden
and Hubler, 1990). As a result, we can potentially reconstruct real-world system dy-
namics from time series data on a single observed variable.

Consider a simple preliminary example of phase space reconstruction using data
on snowshoe hares (prey) and lynx (predator) collected by the Hudson Bay company
in Canada from 1845 to 1935 (Odum, 1953). The time series for each population cycles
through time (Figure 1.1a). System dynamics are portrayed in phase space by plotting
lynx against hares at each point in time (Figure 1.1b). The populations co-evolve
repeatedly along a predator—prey cycle constituting the attractor for the system. A
large predator population over-consumes available prey and crashes for want of food.
This allows the prey to recover until pressed again by recovering predators, and cycling
continues. A shadow version of the predator—prey attractor is reconstructed in phase
space from a single variable by plotting either the prey or predator population against
its level a period later (Figure 1.1c). This is the time delay embedding method of phase
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Fig. 1.1 Example of phase space reconstruction: (a) snowshoe hare (prey) and lynx (preda-
tor) population time series data; (b) phase space solution (from model to dynamics); (c)
reconstructed ‘shadow’ phase space (from data to dynamics). The data were collected by the
Hudson Bay Company in Canada from 1845 to 1935. The figure uses data from 1908 to 1930.

space reconstruction. Takens (1981) derived sufficient conditions guaranteeing that a
shadow phase space preserves essential dynamic properties of the original phase space.

In this clear-cut example, the shadow dynamics reconstructed from the lynx pop-
ulation are already obvious in the cycling time series plots. The full potential of phase
space reconstruction is appreciated when reconstructing deterministic dynamics con-
cealed in a volatile and random-appearing time series. Consider an example from
Kaplan and Glass (1995). There are two time series: z; (plotted in Figure 1.2a) and
v+ (plotted in Figure 1.2d). One of these time series is randomly generated, while the
other is the solution to a deterministic difference equation. We apply three methods to
distinguish between the two: casual observation, autocorrelation functions testing for
linear correlations in the data and NLTS time-delay embedding plots. First, neither
plot exhibits obvious behavioural patterns on casual observation — any dynamic struc-
ture is well concealed. Second, the autocorrelation functions do not exhibit patterns
indicative of corresponding patterns in either time series (Figure 1.2b, ). Time-delay
embedding plots succeed in distinguishing between random and deterministic dynam-
ics. The time-delay plot using x; is randomly distributed on the plane, correctly detect-
ing that this series was randomly generated (Figure 1.2c). In contrast, the time-delay
plot using y, shows structure: a parabolic serial correlation missed by the autocorrela-
tion functions (Figure 1.2f). Indeed, y; was generated by the deterministic parabolic
logistic map whose dynamics we investigate in Chapter 2:

Ti4+1 = 41}15(1 - .’L't), Iy € [O, 1]

In Part 2 (Chapters 6-11), we focus on the application of NLTS to reconstruct real-
world dynamic structure from observed time series data. We propose a strategy for
implementing NLTS that is modified from previous versions in Huffaker (2015), Huf-
faker et al. (20160) and (Huffaker et al., 2016a) (Figure 1.3). We emphasize from the
outset that NLT'S is capable of reconstructing linear as well as nonlinear deterministic
system dynamics, and of diagnosing the presence of linear stochastic dynamics. Our
objective is not limited to finding evidence pointing to nonlinear deterministic struc-
ture, but extends to diagnosing the structure most closely corresponding to reality
whether that be linear, nonlinear, deterministic or stochastic.
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Fig. 1.2 Detection of nonlinear dynamics in data: (a) plot of fifty uniform random variates;
(b) autocorrelation plot of random variates; (c) time-delay embedding plot of random vari-
ates; (d) plot of nonlinear logistic map; (e) autocorrelation plot for logistic map; (f) time-delay
embedding plot for logistic map. Conventional linear methods fail to detect nonlinear deter-

ministic structure in data.
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