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Nonlinear Stochastic Dynamics and Control in
Hamiltonian Formulation

Wei-qiu Zhu”
Department of Mechanics, Zhejiang University, Hangzhou 310027, People’s Republic of China

Abstract The significant advances in nonlinear stochastic dynamics and control in Hamiltonian
formulation mainly due to the present author and his co-workers during the past decade are reviewed.
The exact stationary solutions and equivalent nonlinear system method of Gaussian-white -noises
excited and dissipated Hamiltonian systems, the stochastic averaging method for quasi Hamiltonian
systems, the stochastic stability, stochastic bifurcation, first-passage time and nonlinear stochastic
optimal control of quasi Hamiltonian systems are summarized. Possible extension and applications of

the theory are pointed out.

1. Introduction

Stochastic dynamics was originated from an effort to describe Brownian motion
quantitatively a century ago. In the 1940s and 1950s, the theory of random noise, random
vibration and stochastic (probabilistic) structural dynamics was developed to meet the needs in
variouis engineering areas, such as communication, aeronautical and astronautical, mechanical,
civil and ocean engineering, etc.. Since 1960s the theoretical research on stochastic dynamics has
been focused on the response of nonlinear stochastic systems, stochastic stability and stochastic
control. While great progress had been made until the beginning of the 1990s, the theory for
multi-degree-of-freedom (MDOF) strongly nonlinear stochastic system has not been well
developed -3,

In the past decade, the nonlinear stochastic dynamical systems were formulated as
stochastically excited and dissipated Hamiltonian systems and classified into five groups based on
the integrability and resonance of the associated Hamiltonian systems. An innovative theory of
stochastically excited and dissipated Hamiltonian systems was proposed and developed by the
present author and his co-workers. It includes the exact stationary solutions and equivalent

YRARAK, B R FARE R LAF AR, PEAFRRE, HIRAKTEALSLTS, T 2004 £ 5
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nonlinear system method of dissipated Hamiltonian systems subject to Gaussian white noise
excitation, the stochastic averaging method for quasi Hamiltonian systems, the theory and
approaches for the stochastic stability, stochastic bifurcation, first-passage time and nonlinear
stochastic optimal control of quasi Hamiltonian systems. They constitute a Hamiltonian
theoretical framework for nonlinear stochastic dynamics and control and provide a serious of
procedures for solving the difficult problems in the dynamics and control of MDOF strongly
nonlinear stochastic systems .

In the present paper, the concepts, methods and significant results of the nonlinear stochastic
dynamics and control in Hamiltonian formulation are reviewed and the possible extension and
applications of the theory are pointed out.

2. Hamiltonian Formulation and Classification of Nonlinear Stochastic
Dynamical Systems

A controlled nonlinear stochastic dynamical system of MDOF can be described by using the
following n pairs of equations : '

. OH

S

. OH OH

175, gp, Tt S @ @

Lj=012m k=12-m

where QO and P, are generalized displacements and momenta, respectively; H=H(Q,P) is

I

Hamiltonian with continuous partial derivatives; c; =c,(Q,P) denote the coefficients of quasi-

)

linear dampings; f, = £, (Q,P) denote the amplitudes of stochastic excitations; ¢&,(f) are random

processes, including periodic or harmonic functions in special cases; #,=u (Q,P) denote
feedback control forces. The system governed by equation (1) is called controlled, stochastically
excited and dissipated Hamiltonian system. Early Hamiltonian formulation of nonlinear stochastic
systems ! is the special case of equation (1).
The core of system (1) is the associated Hamiltonian system, which is described by Hamilton
equations
0H . ©oH

.'=_'5 i = T, i=1’2""9 2
Yo Ty, " @

Here, it is assumed that Hamiltonian system (2) is autonomous and characterized by Hamiltonian
H=H(q, p). For mechanical/structural systems, Hamiltonian H represents the total energy (sum of
kinetic energy and potential energy) of the system and it is conservative during the motion of the
system. Hamiltonian systems can be classified according to the number of independent first
integrals (conservative quantities or motion constants) H,=H,H,,--,H,, which are in



involution ®. A dynamic quantity H,=H,(q, p) is called first integral if [H,,H]=0, and two
first integrals are called in involution if [H,, H]=0, where

o, 1, _on o

[I{,-,I{j]— ?
o, %, O b,

Lj=L2r, k=12--n (3)
is the Poisson bracket of H, and H 7+ Hamiltonian system (2) is called non-integrable if r=1,
* integrable (or completely integrable) if # = #, and partially integrable if 1<r<n.

For integrable Hamiltonian systems, it is possible principally to introduce the action-angle
variables, [,and 6, i=1,2,**, n. In terms of the action-angle variables, the Hamiltonian of an

integrable Hamiltonian system is of the form H=H(I) and the Hamilton equations are of the form

6=2D_ (1), ,=0,i=1,2,n @)
ol
where ,(I) are the n frequencies of the Hamiltonian system. The solution to system (4) is then
f;=const, @, =w,(1)t+5;, i=1,2,---,n &)
where &; are constants of integration. An integrable Hamiltonian system is called resonant if its

frequencies satisfy at least one of the following strong resonant relations:
K @,()=0, i=1,2,-m; u=1,2, (6)

where k; are integers. Otherwise, the integrable Hamiltonian system is called non-resonant.

In principle, a partially integrable Hamiltonian system can be converted into one consisting
of an integrable and a non-integrable Hamiltonian subsystems by using canonical transformation,
i.e., Hamiltonian system with Hamiltonian

r—1
H=3 H,(4,,p,)*+H,(4y."+4n Dy Py) (T-a)
n=1

or

r-1

H=ZHTI(III)+Hr(qr""vqn;pn"'pn) . (7-b)
n=1

So, a partially integrable Hamiltonian system can also be resonant or non-resonant, depending on
whether the integrable Hamiltonian sub-system is resonant or not.

Thus, according to their integrability and resonance, Hamiltonian systems can be classified
as five groups: non-integrable, integrable and non-resonant, integrable and resonant, partially
integrable and non-resonant, and partially integrable and resonant. The behaviors of Hamiltonian
systems in different groups are different. For example, the motion of an integrable and non-
resonant Hamiltonian system is almost periodic and a single phase space orbit eventually cover an

n3'



n-dimensional torus uniformly. The motion of a non-integrable Hamiltonian system is chaotic
when its energy reaches certain value and ergodic on the (n—1)-dimensional energy shell.

To date, there is no general procedure to identify whether a given Hamiltonian system is
integrable or not. However, there are some identification methods, such as Hamilton-Jacobi
method®, method of Lax pairs!®!, Painlevé singularity analysis!”, Whittaker integrable
potential® and Poincare map'), each of which is applicable to some special class of
Hamiltonian systems. Any single DOF autonomous Hamiltonian system and » DOF
autonomous linear Hamiltonian system are integrable. Some other examples of integrable
Hamiltonian systems can be found in [10,11].

Controlled, stochastically excited and dissipated Halmltonlan systems governed by equation
(1) can also be classified into five groups based on the integrability and resonance of the
associated Hamiltonian systems. This classification is significant since it has been shown that the
functional form of the exact and approximate solutions of the systems depends on the integrablity
.and resonance of the associated Hamiltonian systems.

3. Exact Stationary Solution

Consider a special case of system (1), ie., a dissipated Hamiltonian system subject to
Gaussian white noise excitation. The equations of motion of the system are of the form

- _OH'

Q= oP ©
n_ OH'  oH'

P= 50 o, L AOR

where W, (f) are Gaussian white noises in the sense of Stratonovich with correlation functions
EYW, (W, (t + 1)} = 2Dy 6(r) . Equation (8) can be rewritten as Stratonovich stochastic differential
equations and then converted into Ito stochastic differential equations by adding the Wong-Zakai
correction terms. These terms can be split into conservative parts and dissipative parts, which can
be combined, respectively, with -3H /3Q, and ~c,;OH N oP; to form overall effective
conservative forces -0H/0Q, and effective damping forces -m;OH/0P;. With these

accomplished, equation (8) becomes
oH

dQ, ===dr

o, P o
OH

dP-=-‘-aE+mya )dt'f'O',kdBk(t)

" where H=H(Q, P) and m; = m; (Q, P) are modified Hamiltonian and modified damping coefficients,
respectively; B, (f) are standard wiener processes; o =0, (Q,P) with oo’ =2(/Df 7). It is seen
from equation (9) that (Q"P")" is a vector of diffusion processes and its transition probability

e 4 o



density is governed by a Forkker-Planck-Kolmogorov (FPK) equation. The exact transient
solution to this FPK equation can generally not be obtained. So, only the exact stationary solution
is considered here. The exact stationary probability density p (g, p) is governed by the following

reduced FPK equation:
lo.H ]+—(m,, g’zp +% ap(,.?;p, (b,p)=0 (102)
or
o1, 5 P (400 (105)
iP;

where b; =cu0; and b; = b,§-") +bj(-{ ), Equation (10a) or (10b) is solved subject to the boundary
condition of vanishing probability flow at the boundary.

3.1 Non-integrable case

It has been shown in [12-14] that, if the associated modified Hamiltonian system with
Hamiltonian H is non-integrable, then the exact stationary solution to equation (10a) or (10b) is of
the form

P(g, P) = Cexpl-A(H)] |y p) an

where C is a normalization constant and A(H) is the solution of the following set of n first-order

linear ordinary differential equations

Y )

i =03i’j =1’29"'sn (12)
’Jap, apj Y op, dH

where bg) is replaced by 5;/2 for equation (10a). If a consistent

(m aH

n OH
‘.'i'a )/b()

ars = h(H) : 13
satisfying all the n equations in equation (12) can be found, then
MHE)=AQ)+ [, h(u)du (14)

The exact stationary solution is obtained by substituting equation (14) into equation (11). MDOF
vibro-impcact systems are the examples of this kind solutions!*®).

3.2 Integrable and non-resonant case

If the associated modified Hamiltonian system is integrable and non-resonant, then the exact

*» 5



stationary solution of equation (10a) or (10b) has the form!'l
(g, p) =Cexp[-A(H)]| # - #ea.p) (15)

where H =[H,H,---H,]" is a n—d vector of first integrals of the associated Hamiltonian system

and A(H) is the solution of the following set of n first-order linear partial differential equations:

m, 2L OH L0 bl b,j') b,ﬁ” OH, 04
" Op, op, Op; 6H

J

=0,i=12,n (16)

If 94/6H, can be found as functions of H, and satisfy the following compatibility conditions:
A 34
6Hs-1 aHs 2 aH) 2 aHY] ’

5.8, =1,2,,n (17

then
A(H)=A(0)+ [ s dH (18)

The second term on the right hand side of equation (18) is a line integral and the integrand is a
summation over s=1,2,**+, n. The exact stationary solution is obtained by substituting equation (18)

into equation (15). Note that equations (15)—(18) hold if H is replaced by vector I of action
variables 1, I,,---, I, . Linear autonomic Hamiltonian systems subject to linear and/or nonlinear

dampings and external and/or parametric excitations of Gaussian white noises are examples of this
kind of solutions [,
3.3 Integrable and resonant case

If the associated modified Hamiltonian system is integrable and resonant with o resonant
relations of the form of equation (6), then the exact stationary solution is of the form

p (g, p=Cexp[-AT, Y] | riq, p), v=via. » (19)
where y=[y, y,---y,] and w, =k;'6, are combinations of angle variables, and A(Z,y) is the

solution of the following set of first-order partial differential equations:

b
mU6H+ 3 o 04 dv, 04 _q
o, Oop, dp; 61 6 ;. Oy, (20)
I!j’ _192,”'9’1; u_'l’z,"'y .

B
l[l (

If 8A/0H and 0A/8y, can be found as functions of 7, and y, and satisfy the following
compatibility conditions;
Fr A T i TA DA
A3, A, w,ou. owdw, dov, ovd,
5,8, =L2,,n ; w,u, =12, 21)

then

5, 04 v, 04

A, w) = A0, 0)+j L —dI+ |, " — dy (22)



The exact stationary solution is obtained by substituting equation (22) into equation (19). Since
H=H(]), equations (19)—(20) hold if I is replaced by H. Examples of this kind of solutions can be
found in [4,14].

3.4 Partially integrable and non-resonant case

If the associated modified Hamiltonian system is partially integrable with Hamiltonian (7-a)
or (7-b), and non-resonant, then the exact stationary solution is of the form'®!

(g, p) = Cexp[~A(H g, -1, 0, (23)

where H, =[H,H,--H,]" and A(H,) is the solution of the following set of n first-order linear

partial differential equations:

m, — oH 9 —b b —+ OH, 94 _ , i=12,n 5 s=1,2,r (24)
op, BpJ op, oH

R

If d1/0H, can be found as functions of H, and satisfy the following compatibility conditions:

i

2 2
oA = o s S8y =L2,er 25)
aHslaHsQ aI{sZaI-[sl
then
A(H)=A(0)+ j dH s=1,2,-- (26)

The exact stationary solution is obtained by substltutmg equation (26) into equation (23).
Equation (23)—(26) hold of H,,H,,---,H, arereplaced by 15,I,,---,I,_; andH, .
3.5 Partially integrable and resonant case

If the associated modified Hamiltonian system is partially integrable with Hamiltonian (7a)
or (7b) and resonant with A resonant relations of the form of equation (6), then the exact

stationary solution is of the form [16]
g, p)=Cexpl-AI}, Ly, 1,1, H, 0,9 p)] @7
where '

1,7 =1,,(q,,,P,7), H, = H,(q,a"',q,,spn“ 'spn)’ v, = Wv(q|9"':qr—1’p19'",p,~|) s /?'(115 * r_pH Vi, "V/ﬁ)
is the solution of the following set of n first-order linear partial differential equations:

w0 40 (,,(81,, oA OH, 04 a,z) 0
"op; 4 o, oI, 5P oH, ip, oy, (28)
,J 1523 7’=1127 »r ; v-],2, aﬂ

If 6&/61,,,62./6H,' and 04/0y, can be obtained as functions of 7 ,H, .y, and satisfy the



following compatibility conditions:

& A , A _ o) , & _ o' , &a _ oA ’ g : o 29)
ar,al,, 61”261,7] oy, 0v,, OOy, OlL,0H, OH@l, oH0y, Oy, H, ol dy, oy, oI,
then
Ayl Hy 0 )= 200+ [ 63]" dr, + j” ﬁdfz + [ 654 dy, (30)

The exact stationary solution is obtained by substituting equation (30) into equation (27).
Equations (27)—(30) hold if 7, are replaced by H, , - The examples of this kind of solutions can
be found in [4,16].

Gyroscopic force is usually derived from generalized potential, which should be a part of
Hamiltonian. The theory and method of exact stationary solution depicted above are applicable to
both non-gyroscopic and gyroscopic systems'”. They can also be applied to the following more

general systems

o Q)
dF =—(D(Q)8Q ,,(Q,P) )dt+01k(Q P)d B (1)
J
where D(Q) is any function of Q. The exact stationary solution of system (31) is
. P4 p)
P 32
p@p) = @ (32)

where o(q, p) is the exact stationary solution of system (31) with D(Q)=1. Besides, some exact
steady state solutions of integrable Hamiltonian system subject to both harmonic and Gaussian
white noise excitations have been obtained %],

It is noted that solution (11) has the property of energy equipartition among various
degrees of freedom of the system and only the total energy of the system is controlled by the
damping forces and stochastic excitations. Solutions (15), (19), (23) and (27), which are
consistent with the solution of linear systems under external excitations of Gaussian white
noises, on the other hand, have the property of energy non-equipatition since both the total
energy of the system and its partition among various degrees of freedom can be adjusted by the
magnitudes and distributions of the damping forces and stochastic excitations. All the exact
stationary solutions of nonlinear stochastic systems obtained from 1933 up to early 1990s 1924
are special cases of solution (11). The only exception is the solution obtained by Cai and
Lin[25], which is a special case of solution (15). Thus, obtaining solutions (15), (19), (23) and
(27) broke the limitations of energy-equipartition solution.

4. Equivalent Nonlinear System Method

The conditions for the exact stationary solutions to exist, such as equations (13), (16), (20),

08-



