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Series Preface

Mathematics is playing an ever more important role in the physical and
biological sciences, provoking a blurring of boundaries between scientific dis-
ciplines and a resurgence of interest in the modern as well as the classical
techniques of applied mathematics. This renewal of interest, both in research
and teaching, has led to the establishment of the series: Texts in Applied Mathe-
matics (TAM).

The development of new courses is a natural consequence of a high level of
excitement on the research frontier as newer techniques, such as numerical
and symbolic computer systems, dynamical systems, and chaos, mix with and
reinforce the traditional methods of applied mathematics. Thus, the purpose
of this textbook series is to meet the current and future needs of these advances
and encourage the teaching of new courses.

TAM will publish textbooks suitable for use in advanced undergraduate and
beginning graduate courses, and will complement the Applied Mathematical
Sciences (AMS) series, which will focus on advanced textbooks and research
level monographs.



Preface

Symmetry and mechanics have been close partners since the time of the
founding masters, namely, Newton, Euler, Lagrange, Laplace, Poisson, Ja-
cobi, and Hamilton, and its subsequent developers, including Noether, Rie-
mann, Routh, Kelvin, Poincaré, and Cartan. To this day, symmetry has
continued to play a strong role, especially with the modern work of Arnold,
Guillemin, Kirillov, Kostant, Moser, Smale, Souriau, Sternberg, and many
others. This book is about these developments, with an emphasis on con-
crete applications that we hope will make it accessible to a wide variety of
readers, especially senior undergraduate and graduate students in mathe-
matics, physics, and engineering.

The geometric point of view in mechanics combined with solid analy-
sis has been a phenomenal success in linking various diverse areas, both
within and across standard disciplinary lines. It has provided both insight
into fundamental issues in mechanics (such as Hamiltonian structures in
continuum mechanics, fluid mechanics, and plasma physics) and provided
useful tools in specific models such as new stability and bifurcation criteria
using the energy-Casimir and energy-momentum methods, new numerieal
codes based on geometrically exact update procedures, and new reorienta-
tion techniques in control theory and robotics.

The role of symmetry in mechanical problems, which was already widely
used by the founders of the subject, has been developed considerably in
recent times to gain further understanding into such diverse phenomena as
reduction, stability, and bifurcation relative to prescribed symmetries (sym-
metry breaking), methods of finding explicit solutions for integrable sys-
tems, and a deeper penetration into special systems, such as the Kowalewski



x Preface

top. We hope this book will provide a reasonable avenue to, and foundation
for, these exciting developments.

Because of the extensive and complex set of possible directions in which
one can develop the theory, we have provided a fairly lengthy introduction.
It is intended to be read lightly at the beginning and then consulted from
time to time as the text itself is read. This volume contains much of the
basic theory of mechanics and should prove to be a useful foundation for
further, as well as more specialized topics. In particular, due to space lim-
itations we warn the reader that many important topics in mechanics are
not treated in this volume. We are preparing a second volume on general
reduction theory and its applications. With luck and a little support. it will
be available in the near future.

A solution manual is available that contains complete solutions to many
of the exercises and other supplementary comments. To obtain one, send a
mailing label along with $15 to cover printing and postage to J. Marsden,
Department of Mathematics, University of California, Berkeley. CA 94720.

We thank Alan Weinstein, Rudolf Schmid, and Rich Spencer for help-
ing with an early set of notes that helped us on our way. Our many
colleagues. students, and readers. especially Henry Abarbanel. Vladimir
Arnold. Larry Bates, Michael Berry, Tony Bloch, Marty Golubitsky, Mark
Gotay, George Haller, Aaron Hershman, Darryl Holm, Phil Holmes, Sameer
Jalnapurkar, Edgar Knobloch, P.S. Krishnaprasad, Debra Lewis, Robert
Littlejohn, Richard Montgomery, Phil Morrison, Richard Murray, Oliver
O'Reilly, George Patrick, Octavian Popp, Matthias Reinsch, Shankar Sas-
try, Juan Simo, Hans Troger, and Steve Wiggins have our deepest gratitude
for their encouragement and suggestions. We also collectively thank all our
students and colleagues who have used these notes and have provided valu-
able advice. We are also indebted to Carol Cook, Anne Kao. Nawoyuki
Gregory Kubota, Sue Knapp, Barbara Marsden, Marnie McElhiney, June
Meyermann, Teresa Wild, and Ester Zack for their dedicated and patient
work on the typesetting and artwork for this book. We want to single out
with special thanks, Nawoyuki Gregory Kubota for his special effort with
the typesetting and the figures (including the cover illustration and his
skillful use of Mathematica). We also thank the staff at Springer-Veriag,
especially Laura Carlson, Ken Dreyhaupt, Riidiger Gebauer, and Karen
Kosztolnyik for their skillful editorial work and production of the book.

Berkeley, CA Jerry Marsden
Santa Cruz, CA Tudor Ratiu
Spring, 1994
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1

Introduction and Overview

1.1 Lagrangian and Hamiltonian Formalisms

Classical mechanics deals with the dynamics of particles, rigid bodies, con-
tinuous media (fRuid, plasma, and solid mechanics), and other fields (such
as electromagnetism, gravity, etc.). This theory also plays a crucial role
in quantum mechanics, in control theory and other areas of physics, en-
gineering and even chemistry and biology. Clearly classical mechanics is a
large subject that plays a fundamental role in science. Throughout history,
mechanics has also played a key role in the development of mathematics.
Starting with the creation of calculus stimulated by Newton’s mechanics,
it continues today with exciting developments in group representations, ge-
ometry, and topology; these mathematical developments in turn are being
applied to interesting problems in physics and engineering.

Symmetry has always played an important role in mechanics, from fun-
damental formulations of basic principles to concrete applications, such as
stability criteria for rotating structures. The theme of this book is to em-
phasize the role of symmetry in various aspects of mechanics.

Warning This introduction treats a collection of topics fairly rapidly. The
student should not expect to understand everything perfectly at this stage.
We will return to many of the topics in subsequent chapters.

Mechanics has two main branches, Lagrangian mechanics and Hamil-
tonian mechanics. In one sense, Lagrangian mechanics is more funda-
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mental since it is based on variational principles and it is what generalizes
most directly to the general relativistic context. In another sense, Hamil-
tonian mechanics is more fundamental, since it is based directly on the
energy concept and it is what is more closely tied to quantum mechanics.
Fortunately, in many cases these branches are equivalent as we shall see in
detail in Chapter 7. Needless to say. the merger of quantum mechanics and
general relativity remains one of the main problems of mechanics.

The Lagrangian formulation of mechanics can be based on the observa-
tion that there are variational principles behind the fundamental laws of
force balance as given by Newton'’s law in F = ma. One chooses a configu-
ration space @ with coordinates ¢*.7i = 1....,n, that describe the config-
uration of the system under study. Then one introduces the Lagmngz'an
L{q', 4", t), which is shorthand notation for L(¢*,...,q".¢"..... q"). Usu-
ally, L is the kinetic minus the potential energy of the System and one
takes ¢° = dq'/dt regarded as the velocity. The variational principle of
Hamilton states

b
o‘/ L{g'. ¢', t)dt = 0. (1.1.1)

In (1.1.1}. we choose curves ¢*() joining two fixed points in Q over a fixed
time interval [a, b], and calculate the integral regarded as a function of this
curve. Then (1.1.1) states that this function has a critical point. If we let
8g' be a variation of the curve (and proceed somewhat formally at first),
then by the chain rule. (1.1.1) is equivalent to

n b
oL ., 9L .\ ., _
;/ﬂ (5(1—1_&1 +8—qi6q>dt—0 (1.1.2)

for all variations 8¢*.

Using 8¢° = %5(1" (which is essentially the equality of mixed partials),
integrating the second term by parts, and using the boundary conditions
8 =0 att=a and b, (1.1.2) becomes

Z/ ((?q (g:))é tdt = 0. (1.1.3)

Since é¢* is arbitrary (apart from being zero at the endpoints), (1.1.2) is
equivalent to the Fuler-Lagrange equations
doL 0L _
dato¢t o~
(This topic will be discussed at greater length in §7.3 and §8.1). For the
case of kinetic minus potential energy for a system of particles, where L
has the form

i=1,...,n (1.1.4)

iosd 1 = 23 i
L(g'¢"0) = 5 >_malld*|* = V(4), (1.1.5)
i=1
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(1.1.4) reduces to

d 5 av
—(mgt) = —=—, 1.1.6
dt (Tn‘tq ) aq; ( )
which is F = ma for the motion of a particle in the potential field V.
Already at this stage, interesting links with geometry emerge. If g;;(q) is
a given metric tensor (for now, just think of this as a ¢-dependent positive-
definite symmetric n x n matrix) and we consider the kinetic energy La-

grangian
i 4t 1 = g aq
L(d'd) = 5 3, 950, (1.1.7)

ig=1

then the Fuler-Lagrange equations are equivalent to the equations of geodesic
motion, as can be directly verified (see §7.5 for details). Conservation laws
that are a result of symmetry in a mechanical context can then be applied
to yield interesting geometric facts. For instance, we will see that theorems
about geodesics on surfaces of revolution can be readily proved this way.

The Lagrangian formalism can be extended to the infinite dimensional
case. Here the ¢ are replaced by fields ¢!,...,™ which are, for ex-
ample, functions of spatial points z' and time. Then L is a function of
oo @™, @', ..., ™ and the spatial derivatives of the fields. We shall
deal with various examples of this later, but we emphasize that properly
interpreted, the variational principle and the Euler-Lagrange equations
remain intact. One simply replaces the partial derivatives in the Euler-
Lagrange equations by functional derivatives defined below.

To pass to the Hamiltonian formalism, introduce the conjugate mo-
menta
oL

pi:a_qi’ i:l,,._’n’ (118)

make the change of variables (¢*, ¢*) — (¢*.p;), and introduce the Hamil-
tonian

H(q',pi,t) = ijt'lj - L(¢'. ¢',t). (1.1.9)
i=1

Remembering the change of variables, we make these computations:

B oL 0@\ _
== +Z(J8p Wapi)_q (1.1.10)

and

8H <~ 8¢ oL aq] aL
—_— —— .1.11
aq° Z Piag ,Zaqf aq¢ ~  0¢" (1.1.11)
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where (1.1.8) has been used twice. Using (1.1.4) and {1.1.8), we see that
(1.1.11) is equivalent to

O0H d
o _ &, L
3 prie (1.1.12)
Thus, the Fuler-Lagrange eguations are equivalent to Hamilton’s equa-
Homs ¢ oH  dp OH
q Pi ]
dt " ap; At og T ooon (1.1.13)
The analogous Hamiltonian partial differential equations for time depen-
dent fields p!,..., ™ and their conjugate momenta. 7, ..., *m, are
dg*  6H on, 6H
5 “Bn o= hgs = Leom (1.1.14)

where H is a functional of the fields ©® and =,, and the variational or
Sfunctional derivatives are defined through the equation

6H .1 1 1 2
/R..é—wl&p d"z = ;%E[H(Lp +ede, 0 T T, ) A
—H(gal,gz,...,n,om,m,..4,7rm)],(1.1.15)

and similarly for §H/8¢?, ..., §H/émm. Both equations (1.1.13) and (1.1.14)
can be recast in Poisson bracket form

F={F H}, (1.1.16)

where the brackets in the respective cases are given by

", (OF G OF 0G .

i=1

and

i §F 6G  §F 8G\
(F,G} = ;/R (5377,1 - EE&?) d"z. (1.1.18)

There is also a variational principle valid directly on the Hamiltonian side.
For the Euler-Lagrange equations, we deal with curves in ¢-space, whereas
for Hamilton’s equations we deal with curves in (g, p)-space. The principle
is

b n
6 [ it - H@pi)dt =0 (1.119)
@ =1

as is readily verified; one requires p;6¢* = 0 at the endpoints.
This formalism is the basis for the analysis of many important systems
in particle dynamics and field theory, as described in standard texts such °



