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Preface

In the fall of 1990, I taught Math 581 at New Mexico State University
for the first time. This course on field theory is the first semester of the
year-long graduate algebra course here at NMSU. In the back of my mind,
I thought it would be nice someday to write a book on field theory, one
of my favorite mathematical subjects, and I wrote a crude form of lecture
notes that semester. Those notes sat undisturbed for three years until late
in 1993 when I finally made the decision to turn the notes into a book.
The notes were greatly expanded and rewritten, and they were in a form
sufficient to be used as the text for Math 581 when I taught it again in the
fall of 1994.

Part of my desire to write a textbook was due to the nonstandard format
of our graduate algebra sequence. The first semester of our sequence is field
theory. Our graduate students generally pick up group and ring theory in
a senior-level course prior to taking field theory. Since we start with field
theory, we would have to jump into the middle of most graduate algebra
textbooks. This can make reading the text difficult by not knowing what
the author did before the field theory chapters. Therefore, a book devoted
to field theory is desirable for us as a text. While there are a number of
field theory books around, most of these were less complete than I wanted.
For example, Artin’s wonderful book (1] barely addresses separability and
does not deal with infinite extensions. I wanted to have a book containing
most everything I learned and enjoyed about field theory.

This leads to another reason why I wanted to write this book. There are a
number of topics I wanted to have in a single reference source. For instance,
most books do not go into the interesting details about discriminants and
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how to calculate them. There are many versions of discriminants in different
fields of algebra. I wanted to address a number of notions of discriminant
and give relations between them. For another example, I wanted to discuss
both the calculation of the Galois group of a polynomial of degree 3 or
4, which is usually done in Galois theory books, and discuss in detail the
calculation of the roots of the polynomial, which is usually not done. I feel it
is instructive to exhibit the splitting field of a quartic as the top of a tower
of simple radical extensions to stress the connection with solvability of the
Galois group. Finally, I wanted a book that does not stop at Galois theory
but discusses non-algebraic extensions, especially the extensions that arise
in algebraic geometry. The theory of finitely generated extensions makes
use of Galois theory and at the same time leads to connections between
algebra, analysis, and topology. Such connections are becoming increasingly
important in mathematical research, so students should see them early.

The approach I take to Galois theory is roughly that of Artin. This
approach is how I first learned the subject, and so it is natural that I feel it
is the best way to teach Galois theory. While I agree that the fundamental
theorem is the highlight of Galois theory, I feel strongly that the concepts of -
normality and separability are vital in their own right and not just technical
details needed to prove the fundamental theorem. It is due to this feeling:
that I have followed Artin in discussing normality and separability before
the fundamental theorem, and why the sections on these topics are quite
long. To help justify this, I point out that results in these sections are cited
in subsequent chapters more than is the fundamental theorem.

This book is divided into five chapters, along with five appendices for
background material. The first chapter develops the machinery of Galois
theory, ending with the fundamental theorem and some of its most imme-
diate consequences. One of these consequences, a proof of the fundamental
theorem of algebra, is a beautiful application of Galois theory and the Sy-
low theorems of group theory. This proof made a big impression on me
when [ first saw it, and it helped me appreciate the Sylow theorems.

Chapter II applies Galois theory to the study of certain field extensions,
including those Galois extensions with a cyclic or Abelian Galois group.
This chapter takes a diversion in Section 10. The classical proof of the
Hilbert theorem 90 leads naturally into group cohomology. While I believe
in giving students glimpses into more advanced topics, perhaps this section
appears in this book more because of my appreciation for cohomology. As
someone who does research in division algebras, I have seen cohomology
used to prove many important theorems, so I felt it was a topic worth
having in this book.

In Chapter III, some of the most famous mathematical problems of antiq-
uity are presented and answered by using Galois theory. The main questions
of ruler and compass constructions left unanswered by the ancient Greeks,
such as whether an arbitrary angle can be trisected, are resolved. We com-
bine analytic and algebraic arguments to prove the transcendence of m and
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e. Formulas for the roots of cubic and quartic polynomials, discovered in
the sixteenth century, are given, and we prove that no algebraic formula
exists for the roots of an arbitrary polynomial of degree 5 or larger. The
question of solvability of polynomials led Galois to develop what we now
call Galois theory and in so doing also developed group theory. This work
of Galois can be thought of as the birth of abstract algebra and opened the
door to many beautiful theories.

The theory of algebraic extensions does not end with finite extensions.
Chapter IV discusses infinite Galois extensions and presents some impor-
tant examples. In order to prove an analog of the fundamental theorem
for infinite extensions, we need to put a topology on the Galois group.
It is through this topology that we can determine which subgroups show
up in the correspondence between subextensions of a Galois extension and
subgroups of the Galois group. This marks just one of the many places in
algebra where use of topology leads to new insights.

The final chapter of this book discusses nonalgebraic extensions. The
first two sections develop the main tools for working with transcendental
extensions: the notion of a transcendence basis and the concept of linear
disjointness. The latter topic, among other things, allows us to extend to
arbitrary extensions the idea of separability. The remaining sections of
this chapter introduce some of the most basic ideas of algebraic geometry
and show the connections between algebraic geometry and field theory,
notably the theory of finitely generated nonalgebraic extensions. It is the
aim of these sections to show how field theory can be used to give geometric
information, and vice versa. In particular, we show how the dimension of an
algebraic variety can be calculated from knowledge of the field of rational
functions on the variety.

The five appendices give what I hope is the necessary background in set
theory, group theory, ring theory, vector space theory, and topology that
readers of this book need but in which they may be partially deficient. These
appendices are occasionally sketchy in details. Some results are proven and
others are quoted as references. Their purpose is not to serve as a text
for these topics but rather to help students fill holes in their background.
Exercises are given to help to deepen the understanding of these ideas.

Two things I wanted this book to have were lots of examples and lots
of exercises. I hope I have succeeded in both. One complaint I have with
some field theory books is a dearth of examples. Galois theory is not an
easy subject to learn. I have found that students often finish a course in
Galois theory without having a good feel for what a Galois extension is.
They need to see many examples in order to really understand the theory.
Some of the examples in this book are quite simple, while others are fairly
complicated. I see no use in giving only trivial examples when some of the
interesting mathematics can only be gleaned from looking at more intricate
examples. For this reason, I put into this book a few fairly complicated and
nonstandard examples. The time involved in understanding these examples
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will be time well spent. The same can be said about working the exercises.
It is impossible to learn any mathematical subject merely by reading text.
Field theory is no exception. The exercises vary in difficulty from quite
simple to very difficult. I have not given any indication of which are the
hardest problems since people can disagree on whether a problem is difficult
or not. Nor have I ordered the problems in any way, other than trying to
place a problem in a section whose ideas are needed to work the problem.
Occasionally, I have given a series of problems on a certain theme, and
these naturally are in order. I have tried not to place crucial theorems
as exercises, although there are a number of times that a step in a proof
is given as an exercise. I hope this does not decrease the clarity of the
exposition but instead improves it by eliminating some simple but tedious
steps.

Thanks to many people need to be given. Certainly, authors of previously
written field theory books need to be thanked; my exposition has been in-
fluenced by reading these books. Adrian Wadsworth taught me field theory,
and his teaching influenced both the style and content of this book. I hope
this book is worthy of that teaching. I would also like to thank the colleagues
with whom I have discussed matters concerning this book. Al Sethuraman
read preliminary versions of this book and put up with my asking too many
questions, Irena Swanson taught Math 581 in fall 1995 using it, and David
Leep gave me some good suggestions. I must also thank the students of
NMSU who put up with mistake-riddled early versions of this book while
trying to learn field theory. Finally, I would like to thank the employees at
TCI Software, the creators of Scientific Workplace. They gave me help on
various aspects of the preparation of this book, which was typed in IATgX
using Scientific Workplace.

April 1996 Pat Morandi
Las Cruces, New Mexico



Notes to the Reader

The prerequisites for this book are a working knowledge of ring theory, in-
cluding polynomial rings, unique factorization domains, and maximal ide-
als; some group theory, especially finite group theory; vector space theory
over an arbitrary field, primarily existence of bases for finite dimensional
vector spaces, and dimension. Some point set topology is used in Sections
17 and 21. However, these sections can be read without worrying about the
topological notions. Profinite groups arise in Section 18 and tensor products
arise in Section 20. If the reader is unfamiliar with any of these topics, as
mentioned in the Preface there are five appendices at the end of the book
that cover these concepts to the depth that is needed. Especially important
is Appendix A. Facts about polynomial rings are assumed right away in
Section 1, so the reader should peruse Appendix A to see if the material is
familiar.

The numbering scheme in this book is relatively simple. Sections are
numbered independently of the chapters. A theorem number of 3.5 means
that the theorem appears in Section 3. Propositions, definitions, etc., are
numbered similarly and in sequence with each other. Equation numbering
follows the same scheme. A problem referred to in the section that it ap-
pears will be labeled such as Problem 4. A problem from another section
will be numbered as are theorems; Problem 13.3 is Problem 3 of Section 13.
This numbering scheme starts over in each appendix. For instance, Theo-
rem 2.3 in Appendix A is the third numbered item in the second section of
Appendix A.

Definitions in this book are given in two ways. Many definitions, including
all of the most important ones, are spelled out formally and assigned a
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number. Other definitions and some terminology are given in the body of
the text and are emphasized by italic text. If this makes it hard for a reader
to find a definition, the index at the end of the book will solve this problem.

There are a number of references at the end of the book, and these are
cited occasionally throughout the book. These other works are given mainly
to allow the reader the opportunity to see another approach to parts of field
theory or a more in-depth exposition of a topic. In an attempt to make this
book mostly self-contained, substantial results are not left to be found in
another source. Some of the theorems are attributed to a person or persons,
although most are not. Apologies are made to anyone, living or dead, whose
contribution to field theory has not been acknowledged.

Notation in this book is mostly standard. For example, the subset relation
is denoted by C and proper subset by C. If B is a subset of A4, then the
set difference {z : x € A,z ¢ B} is denoted by A — B. If I is an ideal in a
ring R, the coset 7 + I is often denoted by 7. Most of the notation used is
given in the List of Symbols section. In that section, each symbol is given
a page reference where the symbol can be found, often with definition.
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Listed here are most of the symbols used in the text, along with the meaning
and a page reference for each symbol.
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alternating group
Vandermonde determinant
transpose of A
discriminant of K/F
discriminant of bilinear form
algebraic closure
separable closure
quadratic closure
p-closure

maximal Abelian extension
transcendence degree
purely inseparable closure
zero set of S

k-rational points of V
special linear group
general linear group

ideal of V

coordinate ring of V'
radical of

dimension of V

function field of V

module of derivations
module of B-derivations
module of B-derivations
module of differentials
differential of a function
tangent space to V at P
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101
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107
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107
108
109
112
112
113
114
115
118
121
165
165
165
166
169
179
187
192
192
194
195
195
195
195
198
201
210
211
211
215
219
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