PASCAL

GENEVA G. BELFORD AND C.L. LIU

PASCAL

GENEVA G. BELFORD
C. L. LIU

UNIVERSITY OF ILLINOIS
AT URBANA-CHAMPAIGN

McGRIYWSHATLL BOOK COMPANY

NEWYORK ST. LOUIS SAN FRANCISCO AUCKLAND BOGOTA HAMBURG JOHANNESBURG LONDON
MADRID MEXICO MONTREAL NEW DELHI PANAMA PARIS SAO PAULO SINGAPORE
SYDNEY TOKYO TORONTO

EASCAL.

Copyright © 1984 by McGraw-Hill, Inc.

Ali rights reserved. Printed in the United States of America.

Except as permitted under the United States Copyright Act of 1976,

no part of this publication may be reproduced or distributed

in any form or by any means, or stored in a data base or retrieval system,
without the prior written permission of the publisher.

34567890DOCDOC8987654
ISBN 0-07-0381386-0

This book was set in Bookman Light by The Saybrook Press. Inc.
The editors were Eric M. Munson and Linda A. Mittiga;

the designer was Anne Canevari Green;

the production supervisor was Charles Hess.

The drawings were done by Burmar.

R. R. Donnelley & Sons Company was printer and binder.

Pascal syntax diagrams are reprinted with permission of

Kathleen Jensen and Niklaus Wirth, Pascal User Manual and Report.
2d ed., copyright © 1974 by Springer-Verlag, Heidelberg, pp. 116-118.
All rights reserved.

Library of Congress Cataloging in Publication Data

Belford. Geneva G.
Pascal.

Includes index.
1. PASCAL (Computer program language) 2. Structured
programming. . Liu. C. L. (Chung Laung), date
II. Title.
QA76.73.P2B45 1984 (01.64'24 83-19927
ISBN 0-07-038138-0

PREFACE

This book is intended to be an introduction to programming in the Pascal
language. It was written to fill the need for a book that a nontechnically
oriented beginner would be able to read—and, we hope. even enjoy reading.
We have not aimed at a textbook for majors in computer science; conse-
quently we do not treat topics such as data structures and algorithms in any
systematic manner.

One of the features of the book is that the topics are arranged in such a
way that the exposition is always sequential, in the sense that understanding
never depends on material to be covered later. We hope thereby to encourage
students to read carefully as they go and not postpone understanding of some
concepts until later. At the same time, the material is arranged so that
students can quickly start to write simple programs and actually use the
computer as early as the first week of the course.

Examples of complete programs are included at the ends of many of the
chapters to expose students to some of the important concepts of program
development, structured programming, and flowcharting. We chose to uti-
lize one of the modular styles of flowcharting (essentially Nassi-Schneider-
man), since we believe that this is helpful in gaining a good feel for structured
programming. We have also waited to introduce flowcharting until after loops
are discussed, since we find that students tend to feel that flowcharts are
useless if they first see them used in discussions of straight-line code.

Even though this is an elementary book, we decided to present syntax in
a formal way by using. with minor alterations, the syntax diagrams from
Jensen and Wirth's Pascal User Manual and Report. We believe that the
clarity and lack of ambiguity of this approach outweigh the small amount of
difficulty that some students may initially experience in understanding the

xii

PREFACE

diagrams. Also, the diagrams, once understood, are useful as a quick sum-
mary of the syntax for later reference. (Furthermore, a beginner could choose
to skip the syntax diagrams in a first reading of the book.)

The proliferation of versions and extensions of the Pascal language
poses something of a problem in writing a text on “Pascal.” We have omitted
discussions of extensions (e.g., predefined character string types) and have
tried to describe the language as originally presented in Jensen and Wirth
and clarified in the 1979 draft standard [B. W. Ravenal, “Toward a Pascal
Standard,” Computer, Vol. 12, No. 4 (April 1979) pp. 68—83.]In the interests
of discouraging sloppy programming, we have, however, avoided any use
(and indeed mention) of the GOTO statement and statement labels, although
GOTO and LABEL have perforce been included in the list of reserved words in
Appendix A. Examples in the text were run on a CDC CYBER 175, using the
E.T.H. Zurich/University of Minnesota Pascal 6000 Compiler. We have at-
tempted to make it clear to the reader that Pascal implementations vary, so
that some experimentation and consultation of local manuals is advisable.

The first eleven chapters of the book cover those features of Pascal with
which one can program tasks like those one would learn how to program in
FORTRAN or BASIC. Chapters 12—16 deal with what might be called “ad-
vanced” features of the Pascal language—recursion, type definition, struc-
tured data types, etc. After completing Chapter 11, the student should have
developed a reasonable amount of programming sophistication. In the later
chapters, therefore, topics are covered at a somewhat brisker pace, although
we hope with equal clarity.

We wish to express our appreciation to the numerous friends, students,
and reviewers who read various parts of the manuscript at various stages and
provided many helpful comments and suggestions. Special thanks go to
Arthur Liestman, Sandra Pritchard, and Andrew Spry, who were responsible
for writing and working out solutions to most of the exercises, and to Cindy
Robins, who, as a high-school-age “beginner, " tested the book for readability
and suitability for self-study.

GENEVA G. BELFORD
C. L. LIU

3-1

3-3
3-4
3-5
3-6
3-7

Preface

INTRODUCTION

Introduction
Programming a Computer

SIMPLE PASCAL PROGRAMS

Introduction

Structure of Simple Programs
Output

Syntax and Syntax Diagrams
A Few Fine Points

Exercises

THE ASSIGNMENT STATEMENT AND

ARITHMETIC EXPRESSIONS

Introduction

The Assignment Statement
Arithmetic Expressions

Constants

Syntax Diagrams

Some Notes on Programming Style
Exercises

CONTENTS

Xi

[\]

[l)
Q=000 O

17

17
18
22
25
26
29
31

vi

CONTENTS

4-1
4-2

4-4
4-5
4-6
4-7

7.

7-1
7-2
7-3
7-4
7-5
7-6
7-7
7-8
7-9

INPUT AND OUTPUT

Introduction

Qutput with WRITELN

Output with WRITE

Input with READ and READLN

Writing Interactive Programs

Notes on Programming Style and Pitfalls
Exercises

INTEGERS AND INTEGER VARIABLES

Introduction

Representing Numbers in a Computer

Type Errors and Type Conversions

Arithmetic Expressions Using INTEGER Values
Writing INTEGER Values

Syntax Diagrams

Exercises

LOOPS AND THE FOR STATEMENT

Introduction

The FOR Statemernt

Compound Statements

Some Subtle Points about FOR Loops
Flowcharts

Syntax

Notes on Programming Style and Pitfalis
Exercises

ARRAYS

Introduction

Use of Subscripted Variables

Declaring Arrays

Higher Dimensional Arrays

Nested FOR Loops

Syntax

Remarks on Techniques, Style, and Pitfalls
A Programming Example

Some Notes on Program Debugging

7-10 Exercises

33

33
34
40
42
46
48
50

53

53
53
56
58
61
62
63

65

65
66
69
71
75
77
78
79

82

82
83
86
88
89
95
95
99
103
105

8.

8-2
8-3

8-5
8-6
8-7
8-8
8-9
8-10
8-11

9.

9-1
9-2
9-3

9-5
9-6

9-8
9-9
9-10

10.

10-1
10-2
10-3
10-4
10-5
10-6

11.

11-1
11-2
11-3
11-4

LOOP CONTROL WITH WHILE AND REPEAT 108
Introduction 108
The WHILE Statement 108
BOOLEAN Variables 110
Boolean Expressions 111
Relational Operators and Conditions 112
Reading Unknown Amounts of Data 115
Loops with REPEAT...UNTIL 118
Syntax Diagrams 120
Some Hints on Programming Style and Pitfalls 123
A Programming Example 126
Exercises 129
THE IF AND CASE STATEMENTS 133
Introduction 133
The IF Statement 134
Flowcharts with Branching 138
Nesting IF Statements 139
The CASE Statement 141
Syntax 144
Programming Hints: Efficiency and Testing 145
A Programming Example: Sorting 148
A Programming Example: Loan Payment Schedule 152
Exercises 155
CHARACTER VARIABLES AND

CHARACTER STRINGS 162
Introduction 162
Character Variables 163
Packed Arrays 168
Character Strings 170
Syntax 176
Exercises 177
PROCEDURES AND FUNCTIONS 181
Introduction 181
Defining and Calling a Procedure 183
Value Parameters 185
Variable Parameters 188

CONTENTS

viii

CONTENTS

11-5
11-6
11-7
11-8
11-9
11-10
11-11
11-12
11-13

11-14

12,

12-1
12-2
12-3
12-4
12-5
12-6
12-7
12-8

13'

13-1
13-2
13-3
13-4
13-5
13-6
13-7
13-8

14.

14-1
14-2
14-3
14-4
14-5
14-6
14-7
14-8

Scope of Variables: Local and Global Variables
Block-Structured Programs

Procedures with a Single Result: Functions

Procedures and Functions as Parameters

Syntax Diagrams

Standard Procedures: Input-Output and Packing Arrays
Standard Functions: Arithmetic and Ordinal Functions
A Programming Pitfall: Side Effects

Programming Hints: Testing and Debugging a Modular
Program

Exercises

RECURSIVE SUBPROGRAMS

Introduction

A Simple Example

A Practical Example

Forward References

Syntax

Notes on Style and Pitfalls

A Programming Example: Sorting
Exercises

SIMPLE DATA TYPES

Introduction

Defining New Simple Types by Enumeration
Ordering of Values

Using Enumerated Types in CASE Statements
Subrange Types

Syntax

A Programming Example: Analyzing Student Grades
Exercises

SETS AND ARRAYS AS STRUCTURED TYPES

Introduction

Elementary Set Theory

Sets in Pascal

Set Operations

Arrays of Arrays

Variables of Defined Types as Subprogram Parameters
Syntax

Exercises

191
195
200
202
205
207
209
212

214
215

219

219
221
224
229
231
232
232
238

241

241
241
243
245
247
249
249
253

255

255
256
257
259
263
265
266
266

15.

15-1
15-2
15-3
15-4
15-5
15-6
15-7
15-8

16.

16-1
16-2
16-3
16-4
16-5
16-6

RECORDS AND FILES

Introduction

Defining Record Types and Declaring Records
Referencing Records and Their Fields

Files

Textfiles

Syntax

A Programming Example: Student Records
Exercises

POINTERS AND LISTS

Introduction

Pointers

Linked Lists

Syntax

A Programming Example: Editing Text
Exercises

Appendix A
Appendix B

Index

268

268
269
273
277
285
288
290
296

298

298
301
304
308
309
314

316
317
327

ix

CONTENTS

INTRODUCTION

1-1 INTRODUCTION

The electronic computer was invented slightly more than 30 years ago.
Seldom in the history of the world has a technology developed at such an
explosive rate. By now computers play a role in almost every aspect of our
daily lives. Computers are used to record our banking transactions, to check
our income tax returns, and to control the inventories of the stores where we
shop. Computers are used to control the flight of spacecraft, to regulate the
processes in a chemical factory, and to analyze the results of complex physics
experiments.

We are now beginning to see computers appearing in our homes. Com-
puters are built into microwave ovens to carry out complex sequences of
cooking operations without our having to be on hand to turn the dials.
Ultramodern sewing machines have built-in computers to allow a wide choice
of fancy stitches without mechanical cams. Many of us have enjoyed so-called
video games, which are really computer games that use our TV screen for a
display. If we're anxious to save on gas, we could buy a computer for our car
that tells us, with merely the touch of a button, what gas mileage we are
getting at the moment. And many of the readers of this book are wearing
computers on their wrists to tell them the time and carrying small computers
in their pockets to relieve them of the need to remember how to multiply.

Given this pervasiveness of computers, anyone with any curiosity at all
should want to learn something about them. There are many questions one
might raise: First, what is a computer? (Clearly the computers inside our
watches and those that manage our bank accounts are rather different
machines!) How is a computer built? What kinds of jobs can a computer do?
If we want a computer to do one of those jobs, what one should we buy—and

2

CHAPTER ONE

how do we go about using that computer to get the job done? It is not possible
for us to cover all aspects of computing in this book. Our goal is the limited
one of teaching you to use a general-purpose computer, that is, one that can
be used to carry out a wide variety of tasks involving computations and data
manipulation.

If you are interested in learning all about automobiles, an obvious first
step is to learn to drive one. This will give you a good feel for the capabilities
and limitations of cars. Similarly, if you learn how to use a computer, you will
not only be able to use it to solve various kinds of problems, but you also
should gain a reasonably good understanding of what the capabilities and
limitations of a computer are. Your view, as a beginner, will necessarily be a
bitlimited. Just as when you first learn to drive a car you are unlikely to have
a feel for what it’s like to drive in the Indianapolis 500, so when you first learn
to use a computer you may not be able to imagine how you could get the
computer to do such complex tasks as maintaining the records of a large
corporation or guiding a spacecraft to the moon. However, as you progress
through this book. you will find yourself gaining a basic understanding of
how computers can help solve real problems.

1-2 PROGRAMMING A COMPUTER

Avisitor from Mars has just presented us with a robot which he claims can do
all sorts of wonderful things. Two immediate questions arise: What are the
wonderful things that the robot can do? How do we instruct the robot to do
these wonderful things for us?

Similarly, when you discover the availability of a computer at school or
at work, you might ask: What are the wonderful things that a computer can
do? How do I instruct the computer to do these wonderful things for me?

This book is mainly concerned with answering these two questions. To
do this, we will concentrate on teaching you how to give instructions to a
computer, since providing an answer to the second question should go along
way toward answering the first. If you are capable of giving instructions to
the computer you must have a reasonably good idea of what the computer can
and cannot do. To return to the car analogy, when you learn how to put a car
in forward and backward gears, you know that a car can move forward or
backward. Not having been taught to move a car sideways, you might feel
reasonably safe in concluding that cars do not have that capability—al-
though it might occur to a bright student that making a car hop sideways
could just be too tricky a maneuver for a beginning course!

The first thing to get clear in learning to use a computer is that a
computer is just a machine. Any instruction given to a computer must be
given in such a way that the computer can understand exactly what the
instruction is. Indeed, a computer can only follow instructions given in a
code known as machine language. Most computers are built in such a way
that these machine language instructions are in the form of sequences of 0's
and 1's. (For example, 0111011010 might mean “multiply 3 times 2.”) It is

clear that we ordinary human beings would have some difficulty remember-
ing instructions coded like this. Unfortunately, there are compelling engi-
neering reasons for building computers this way. At first glance it seems that
we are in a dilemma; namely, a computer can only understand instructions
given in the form of sequences of 0’s and 1's, while a human being would find
it extremely cumbersome to give instructions in this form. The situation,
however, is not an unfamiliar one. If we wish to talk to a Martian in English
while the Martian can only understand Martian, we need an interpreter.
Indeed, the same idea works for communication with a computer, as Figure

1-1 illustrates.

Instruction

Instruction nt ver in Results of
giveq in — prr‘e?gr —_ r?\achine —— | Computer | —— carrying out
English language instruction

The illustration is not accurate in one particular; namely, we really
cannot give instructions in plain English to the computer. There are two
reasons for this: First, ordinary English is too complicated for us to “train”
an interpreter to understand the whole language. (As will be seen, the inter-
preter is less intelligent than a human.) Second, ordinary English can be
ambiguous. There are obvious examples such as, “Find the square root of 4
times 5.” (Is the answer 10 or 2V/5?) But even carefully written instructions
can leave something to be guessed at. For example, the instruction “Add to
each salesperson’s salary a bonus of 5 percent of the difference between his
total sales and his target sales” leaves open the question as to whether there
can be a negative bonus, that is, a deduction from the regular salary, if total
sales are below target sales. To avoid these problems, what has actually
happened is that simple, English-like languages have been designed with the
following requirements in mind:

1. They should be close enough to English so that they are easy for human
beings to learn, understand, and remember.

2. They should be flexible enough so that it is convenient to instruct the
computer to carry out quite complicated tasks.

3. They should be precise enough so that there can be no ambiguity as to
the intention of the user.

4. They should make translation to machine language not only possible
but also reasonably efficient.

Such artificial languages are referred to as programming languages.
(We should note that a set of instructions given to a computer to define some
task is known as a program; writing such a set of instructions is known as
programming the computer.) Since the early 1950s many programming
languages have been proposed. The more important and widely used ones
include the languages called FORTRAN, PL/I, COBOL, BASIC, ALGOL, APL,
and Pascal. It is not possible, nor is it necessary, for us to teach a student all

3

INTRODUCTION

Figure 1-1

CHAPTER ONE

Figure 1-2

these languages in one course. The best approach for abeginner is to pick one
language and learn to use it proficiently. Since most of these languages bear a
strong resemblance to each other, both in appearance and in underlying
design philosophy, students should have little difficulty in learning new
languages on their own after they have mastered one.

The language we have picked to describe in this book is called Pascal.
Pascal is a relative newcomer among programming languages, having been
designed by Niklaus Wirth (a professor at the Federal Institute of Technology
in Zurich, Switzerland) in 1969. Having been built on some 15 years of
previous development and experimentation in the design of programming
languages, Pascal is in many ways easier to use—and has fewer pitfalls for the
unwary—than many of the older languages. It is therefore a good choice as a
language for a beginner to learn.

The next question is: How are interpreters trained to translate instruc-
tions given in the Pascal language into instructions in machine language for
the computer to execute? As we hinted earlier, human interpreters are not
used. There are many obvious reasons for this: Humans are not always
reliable; they won't work 24 hours a day; they are slow; they might get sick;
they take vacations and coffee breaks; and it takes a long time to train them. A
much better idea is to build a machine that will act as an interpreter. As a
matter of fact, the best candidate for such a machine is the computer itself.
When provided with a set of instructions detailing how to carry out the
translation, the computer can perform the task of translating instructions
given in Pascal into instructions in machine language. Figure 1-2 illustrates

the situation.

Instructions Computer Instructions Results of
givenin (acti.ng as given in Computer carrying out

programming an inter- machine instructions
language preter) language

The set of instructions (or program) given to a computer to tell it how to
translate from an English-like programming language to machine language
is usually referred to as a compiler. Luckily for those of us who want to use
computers, compilers have been written (and are readily available) to trans-
late from almost any popular programming language to the machine lan-
guage of whatever computer we might have available. Just as human trans-
lators may translate the same sentence in slightly different ways, so two
different compilers on different computers may translate the same program
slightly differently. Programming language features, the detailed effects of
which may vary from computer to computer, are referred to as being imple-
mentation-dependent. Because of this dependence on implementation, we
cannot always describe to you in perfect detail what a program written in
Pascal will do on your computer. But as we describe the Pascal language, we
will try to warn you when your computer may behave slightly differently from
ours.

Actually, compilers are only one of a number of programs that automati-
cally come into play to make your use of the computer easy. Another program
(sometimes called an executive or monitor} looks at your job, sees what
programming language you have written it in, calls on the proper compiler to
translate it, and then sees to it that the resulting machine language instruc-
tions are carried out. Still other programs handle the details of fetching the
data you want worked on from wherever it may happen to be stored and of
returning results to you in the form you ask for—e.g., displayed on a TV
screen or printed on paper. On large central computers, such as those main-
tained at colleges and universities, accounting programs check whether you
have money to use the computer and, if so, bill the cost of your job to your
account (which, like your bank account, is maintained inside the computer).
In short, one no longer should talk about “the computer” but about “the
computer system,” where the system includes not only the hardware (the
electronic machine itself} but also software (the set of prewritten programs
that make it convenient for you to get your jobs done).

5

INTRODUCTION

SIMPLE PASCAL PROGRAMS

2-1 INTRODUCTION

As we noted in the preceding chapter, a computer program is a set of instruc-
tions given to the computer. This book explains how to write programs in the
particular language known as Pascal. In this chapter, we shall show you what
a Pascal program looks like by introducing one of the simplest (and one of the
most important] instructions we can give to the computer.

Instructions given to a computer, like those written in ordinary En-
glish, are divided into sentences, which in Pascal are referred to as state-
ments. The major part of a Pascal program consists of a number of state-
ments arranged in sequential order. This corresponds to a set of instructions
to be followed in that same order. In addition to these statements, which are
explicit instructions to the computer to perform particular tasks, the pro-
gram must also include other information that the computer needs in order
to carry out these tasks successfully. The situation is analogous to that of a
truck driver ordered to drive a particular truck from Chicago to New York. In
addition to explicit instructions on how to get to New York, the trucker might
also like to know the truck’s weight so that, for example, he or she can avoid
state weighing stations if the truck is overweight.

2-2 STRUCTURE
OF SIMPLE PROGRAMS

The first information that needs to be given to the compiler in a Pascal
program is the program’s name. Every programn must have a name to be used

for identification purposes. A name is made up of characters. The characters
may be either letters (A, B...., Z) or digits (0, 1, 2,..., 9), but the first charac-
ter must be a letter. Thus,

REPORT TAXS Q744 AAA

are all possible names for programs, while

7RATE AB” JOHN DOE

are illegal names for programs. 7RATE is illegal because it begins with a
digit. AB* is illegal because it contains an *, which is a character that is
neither a letter nor a digit. JOHN DOE is illegal because it contains a blank,
which is neither a letter nor adigit but is a character. You can make up names
that are as long as is necessary to identify your program descriptively, for
example, TAXCOMPUTATION or INVESTMENTUPDATE. But you should be
warned that some compilers will only look at the first eight characters of a
name, and they will confuse two programs named, for example, TAXCOMPU-
TATIONFED and TAXCOMPUTATIONSTATE.

There is one more restriction—a name cannot be a reserved word. The
reserved words are those that have special roles to play in the language, so
that it would confuse the compiler if you used them for other purposes. For
handy reference we have listed all of the Pascal reserved words in Appendix A.

Every Pascal program begins with a heading that gives its name, e.g.,

PROGRAM PAYROLL ;

Note that the heading begins with the word PROGRAM. PROGRAM is a
reserved word indicating that this is the beginning of a program and that the
program’s name will follow. In this case the program’s name is PAYROLL.
(Since the word PROGRAM is reserved, PROGRAM PROGRAM is illegal.) The
heading is then followed by a program block, which, in the case of very simple
programs, consists of the list of instructions to be carried out by the comput-
er. This list of instructions, or statements, is prefaced by the word BEGIN and
followed by the word END. Thus a simple program looks like this:

PROGRAM SiIMPLE;
BEGIN

(list of statements)
END .
Notice that a period follows the END to indicate the end of the program. (It
would appear at first sight that END itself should play this role. But you will

see later that ENDs can also appear in the middle of a program.) The other
punctuation appearing here is the semicolon, used to separate the heading

7

SIMPLE PASCAL
PROGRAMS

