R MW MK = == W

Applying UML and Patterns

PTR

An Introduction to Object-Oriented Analysis and Design’
and the Unified Process

UML Firgt A, b H

SR LR L T Ry s AT
(B2 - FHMR)

[%] Craig Larman
Philippe Kruchten

T

APPLYING UNL
AND PATTERNS

An Introduction to Object-Oriented Analysis
and Design and the Unified Process

lllllllllllll] U o 3 - Ly T 2 % SIUSL 2k B)22 S 8l 2
Z i A ARG AR, A28 d6) xF Bt a8 sk AFah o A
e Ak, (UML Ao K 5 1) iX AR 4558 Ko 4749
"

—— Martin Fowler,

UML Distllled) &5 (£4)) 5%

1R R A5G U 14
www.infopower.com.cn

Applying UML and Patterns

An Introductio tOb_] ct-Oriented Analysis and Des sign
thnﬁdP

UML ?m*ﬁitl“ fH

m'f@'?ﬂi'%u

www.infopower.com.cn

Applying UML and Patterns: an introduction to object-oriented analysis and design and the Unified Process,
Second Edition (ISBN 0-13-092569-1)

Craig Larman

Copyright © 2002 Prentice Hall PTR

Original English Language Edition Published by Prentice Hall PTR

All rights reserved.

Reprinting edition published by PEARSON EDUCATION NORTH ASIA LTD and CHINA ELECTRIC
POWER PRESS, Copyright © 2004.

AASRENIR 1 Pearson Education # 40 H i/ i RAZE P EE A (Fi. M HSHTBIX A4 2
XS BFEHMR. KIT.
REHREBEFA, REUERH R RHIRD A BRI RS .

A2 WE# Pearson Education Bith#R%, TIREE R,

ARTRBUSEEE RS EF: 01-2004-1302

For sale and distribution in the People’s Republic of China exclusively (except Taiwan, Hong Kong SAR
and Macao SAR).

NRFPEARNNEEN (FEEFEEE. RISHTRRATESEHE) HEE17T.

BIHEMGE (CIP) $iE

UML AR A : B RIS RE—IHESIE: B2MK/ (£) /K8 (Laman, C.) E.
— A, bR PEEHBRE, 2004

R KB RF))

ISBN 7-5083-2204-5

[.U.. IL#r. [NLEHEXMKRES, UML-BFRIF—%L IV.TP312

hE R A B CIP BT (2004) 2 029862 &

M PB & RRARES
& UMLAERNA: BAMSEMHTRIRTRE— RS (B - B
% F: () Craig Larman
RERmE: 487%
HARERAT: P EE R
Mtk A =RAEReS HEBI4E5: 100044
#iE: (010D 88515918 £ H: (010) 88518169
B Rl dEREREIRIT
¥ 1 787X1092 1/16 Bl 3k:40.75 BWm: 2
SE) : ISBN 7-5083-2204-5
MR IR 200445 BIERE 1K 2004 5F 5 A 1 RENRY
E
R

dm P

#r: 59.80 7
BH BELR

For Julie

Without your support, this would not have been posstible.

For Haley and Hannah

Thanks for putting up with a distracted Daddy, again!

“This edition contains Larman’s usual accurate and thoughtful writing. It is a very
good book made even better.”

—Alistair Cockburn, author, Writing Effective Use Cases and Surviving OO
Projects.

“People often ask me which is the best book to introduce them to the world of OO
design. Ever since I came across it Applying UML and Patterns has been my unre-
served choice.”

—Martin Fowler, author, UML Distilled and Refactoring.

“This book makes learning UML enjoyable and pragmatic by incrementally introduc-
ing it as an intuitive language for specifying the artifacts of object analysis and
design. It is a well written introduction to UML and object methods by an expert
practitioner.”

—Cris Kobryn, key contributor to UML 1.x specifications, and chair of the UML
Revision Task Force and UML 2.0 Working Group.

“Too few people have a knack for explaining things. Fewer still have a handle on
software analysis and design. Craig Larman has both.”

—dJohn Vlissides, author, Design Patterns and Pattern Hatching.

FOREWORD

Programming is fun, but developing quality software is hard. In between the
nice ideas, the requirements or the “vision,” and a working software product,
there is much more than programming. Analysis and design, defining how to
solve the problem, what to program, capturing this design in ways that are easy
to communicate, to review, to implement, and to evolve is what lies at the core of
this book. This is what you will learn.

The Unified Modeling Language (UML) has become the universally-accepted
language for software design blueprints. UML is the visual language used to
convey design ideas throughout this book, which emphasizes how developers
really apply frequently used UML elements, rather than obscure features of the
language.

The importance of patterns in crafting complex systems has long been recog-
nized in other disciplines. Software design patterns are what allow us to
describe design fragments, and reuse design ideas, helping developers leverage
the expertise of others. Patterns give a name and form to abstract heuristics,
rules and best practices of object-oriented techniques. No reasonable engineer
wants to start from a blank slate, and this book offers a palette of readily usable
design patterns.

But software design looks a bit dry and mysterious when not presented in the
context of a software engineering process. And on this topic, I am delighted that
for his second edition, Craig Larman has chosen to embrace and introduce the
Unified Process, showing how it can be applied in a relatively simple and low-
ceremony way. By presenting the case study in an iterative, risk-driven, archi-
tecture-centric process, Craig’s advice has realistic context; he exposes the
dynamics of what really happens in software development, and shows the exter-
nal forces at play. The design activities are connected to other tasks, and they no
longer appear as a purely cerebral activity of systematic transformations or cre-
ative intuition. And Craig and I are convinced of the benefits of iterative devel-
opment, which you will see abundantly illustrated throughout.

So for me, this book has the right mix of ingredients. You will learn a systematic
method to do Object-Oriented Analysis and Design (OOA/D) from a great
teacher, a brilliant methodologist, and an “O0 guru” who has taught it to thou-
sands around the world. Craig describes the method in the context of the Uni-

FOREWORD

fied Process. He gradually presents more sophisticated design patterns—this will
make the book very handy when you are faced with real-world design challenges.
And he uses the most widely accepted notation.

I'm honored to have had the opportunity to work directly with the author of this
major book. I enjoyed reading the first edition, and was delighted when he asked me
to review the draft of his second edition. We met several times and exchanged many
e-mails. I have learned much from Craig, even about our own process work on the
Unified Process and how to improve it and position it in various organizational con-
texts. I am certain that you will learn a lot, too, in reading this book, even if you are
already familiar with OOA/D. And, like me, you will find yourself going back to it, to
refresh your memory, or to gain further insights from Craig’s explanations and expe-

rience. N

In an iterative process, the result of the second iteration improves on the first. Simi-
larly, the writing matures, I suppose; even if you have the first edition, you'll enjoy
and benefit from the second one.

Happy reading!

Philippe Kruchten
Rational Fellow

Rational Software Canada
Vancouver, BC

Design robust and
maintainable
object systems.

Follow a roadmap
through require-
ments, analysis,
design, and coding.

Use the UML to
illustrate analysis
and design models.

Improve designs by
applying the “gang-
of-four” and
GRASP design
patterns.

Learn efficiently by
following a refined
presentation.

Learn from a
realistic exercise.
Translate to code.

Design a layered
architecture.

PREFACE

Thank you for reading this book! This is a practical introduction to object-ori-
ented analysis and design (OOA/D), and to related aspects of iterative develop-
ment. I am grateful that the first edition was received as a popular introduction
to OOA/D throughout the world, translated into many languages. Therefore,
this second edition builds upon and refines—rather than replaces—the content
in the first. I want to sincerely thank all the readers of the first edition.

Here is how the book will benefit you.

First, the use of object technology has proliferated in the development of soft-
ware, and mastery of OOA/D is critical for you to create robust and maintain-
able object systems.

Second, if you are new to OOA/D, you are understandably challenged about
how to proceed through this complex subject; this book presents a well-defined
roadmap—the Unified Process—so that you can move in a step-by-step process
from requirements to code.

Third, the Unified Modeling Language (UML) has emerged as the standard
notation for modeling; so it is useful for you to be conversant in it. This book
teaches the skills of OOA/D using the UML notation.

Fourth, design patterns communicate the “best practice” idioms and solutions
that object-oriented design experts apply in order to create systems. In this book
you will learn to apply design patterns, including the popular “gang-of-four” pat-
terns, and the GRASP patterns which communicate fundamental principles of
responsibility assignment in object design. Learning and applying patterns will
accelerate your mastery of analysis and design.

Fifth, the structure and emphasis in this book is based on years of experience in
training and mentoring thousands of people in the art of OOA/D. It reflects that
experience by providing a refined, proven, and efficient approach to learning the
subject so your investment in reading and learning is optimized.

Sixth, it exhaustively examines a single case study—to realistically illustrate
the entire OOA/D process, and goes deeply into thorny details of the problem; it
is a realistic exercise,

Seventh, it shows how to map object design artifacts to code in Java.

Eighth, it explains how to design a layered architecture and relate the graphi-
cal user interface layer to domain and technical services layers.

xvii

Design a
framework.

Xviii

PREFACE

Finally, it shows you how to design an object-oriented framework and applies
this to the creation of a framework for persistent storage in a database.

Objectives

The overarching objective is this:

Help students and developers create object designs through the application
of a set of explainable principles and heuristics.

By studying and applying the information and techniques presented here, you
will become more adept at understanding a problem in terms of its processes
and concepts, and designing a solid solution using objects.

Intended Audience

This book is an introduction to OOA/D, related requirements analysis, and to
iterative development with the Unified Process as a sample process; it is not
meant as an advanced text. It is for the following audience:

m Developers and students with experience in an object-oriented programiming
language, but who are new—or relatively new—to object-oriented analysis
and design.

® Students in computer science or software engineering courses studying
object technology.

8 Those with some familiarity in OOA/D who want to learn the UML notation,
apply patterns, or who want to sharpen and deepen their analysis and
design skills.

Prerequisites

Some prerequisite knowledge is assumed—and necessary—to benefit from this

book:

® Knowledge and experience in an object-oriented programming language

such as Java, C#, C++, or Smalltalk.

Knowledge of fundamental object technology concepts, such as class,
instance, interface, polymorphism, encapsulation, interfaces, and inherit-
ance.

Fundamental object technology concepts are not defined.

Java Examples

In general, the book presents code examples in Java or discusses Java imple-
mentations, due to its widespread familiarity. However, the ideas presented are
applicable to most—if not all—object-oriented programming languages.

PREFACE

Book Organization

The overall strategy in the organization of this book is that analysis and design
topics are introduced in an order similar to that of a software development
project running across an “inception” phase (a Unified Process term) followed by
three iterations (see Figure P.1).

1. The inception phase chapters introduce the basics of requirements analysis.

2. TIteration 1 introduces fundamental OOA/D and how to assign responsibili-
ties to objects.

3. Iteration 2 focuses on object design, especially on introducing some high-use
“design patterns.”

4. Iteration 3 introduces a variety of subjects, such as architectural analysis
and framework design.

Topics such as OO analysis and OO
design are incrementally introduced in
iteration 1, 2, and 3.

Figure P.1. The organization of the book follows that of a development project.

Web-Related Resources

m Please see www.craiglarman.com for articles related to object technology,
patterns, and process.

m Some instructor resources can be found at www.phptr.com/larman.

Enhancements to the First Edition

While retaining the same core as the first edition, the second is refined in many
ways, including:

m Use cases are updated to follow the very popular approach of [Cockburn01].

m The well-known Unified Process (UP) is used as the example iterative pro-
cess within which to introduce OOA/D. Thus, all artifacts are named accord-
ing to UP terms, such as Domain Model.

m New requirements in the case study, leading to a third iteration.

XiX

PREFACE

m Updated treatment of design patterns.
m Introduction to architectural analysis.

Introduction of Protected Variations as a GRASP pattern.

[
a A 50/50 balance between sequence and collaboration diagrams.

® The latest UML notation updates.

m Discussion of some practical aspects of drawing using whiteboards or UML

CASE tools.

Acknowledgments

First, a very special thanks to my friends and colleagues at Valtech, world-class
object developers and iterative development experts, who in some way contrib-
uted to, supported, or reviewed the book, including Chris Tarr, Michel Ezran,
Tim Snyder, Curtis Hite, Celso Gonzalez, Pascal Roques, Ken DeLong, Brett
Schuchert, Ashley Johnson, Chris Jones, Thomas Liou, Darryl Gebert, Frank
Rodorigo, Jean-Yves Hardy, and many more than I can name.

To Philippe Kruchten for writing the foreword, reviewing, and helping in so
many ways.

To Martin Fowler and Alistair Cockburn for many insightful discussions on pro-
cess and design, quotes, and reviews.

To John Vlissides and Cris Kobryn for the kind quotes.

To Chelsea Systems and John Gray for help with some requirements inspired by
their Java technology ChelseaStore POS system.

To Pete Coad and Dave Astels at TogetherSoft for their support.

Many thanks to the other reviewers, including Steve Adolph, Bruce Anderson,
Len Bass, Gary K. Evans, Al Goerner, Luke Hohmann, Eric Lefebvre, David
Nunn, and Robert J. White.

Thanks to Paul Becker at Prentice-Hall for believing the first edition would be a
worthwhile project, and to Paul Petralia and Patti Guerrieri for shepherding the
second.

Finally, a special thanks to Graham Glass for opening a door.

About the Author

Craig Larman serves as Director of Process for Valtech, an international con-
sulting company with divisions in Europe, Asia, and North America, specializ-
ing in e-business systems development, object technologies, and iterative
development with the Unified Process.

Since the mid 1980s, Craig has helped thousands of developers to apply object-
oriented programming, analysis, and design, and assisted organizations adopt
iterative development practices.

PREFACE

After a failed career as a wandering street musician, he built systems in APL,
PL/I, and CICS in the 1970s. Starting in the early 1980s—after a full recovery—
he became interested in artificial intelligence (having little of his own), natural
language processing, and knowledge representation, and built knowledge sys-
tems with Lisp machines, Lisp, Prolog, and Smalltalk. He plays bad lead guitar
in his part-time band, the Changing Requirements (it used to be called the
Requirements, but some band members changed...).

He holds a B.Sc. and M.Sc. in computer science from Simon Fraser University in
Vancouver, Canada.

Contact

Craig can be reached at clarman@ieee.org and www.craiglarman.com. He wel-
comes questions from readers and educators, and speaking, mentoring, and con-
sulting enquiries.

Typographical Conventions

This is a new term in a sentence. This is a Class or method name in a sentence.
This is an author reference [Bob67]. A language independent scope resolution
operator “--” is used to indicate a class and its associated method as follows:
ClassName--methodName.

Production Notes

The manuscript of this book was created with Adobe FrameMaker. All drawings
were done with Microsoft Visio. The body font is New Century Schoolbook. The
final print images were generated as PDF files using Adobe Acrobat Distiller,
from PostScript generated by an AGFA driver.

xXi

CONTENTS AT A GLANCE

PART | INTRODUCTION

1 Object-Oriented Analysis and Design 3

2 Iterative Development and the Unified Process 13

3 Case Study: The NextGen POS System 29

PART Il INCEPTION

Inception 35

Understanding Requirements 41

Use-Case Model: Writing Requirements in Context 45
Identifying Other Requirements 83

From Inception to Elaboration 107

PART Hl ELABORATION ITERATION 1

9 Use-Case Model: Drawing System Sequence Diagrams 117

10 Domain Model: Visualizing Concepts 127

11 Domain Model: Adding Associations 153

12 Domain Model: Adding Attributes 167

13 Use-Case Model: Adding Detail with Operation Contracts 177
14 From Requirements to Design in this [teration 193

15 Interaction Diagram Notation 197

16 GRASP: Designing Objects with Responsibilities 215

17 Design Model: Use-Case Realizations with GRASP Patterns 247
18 Design Model: Determining Visibility 279

19 Design Model: Creating Design Class Diagrams 285

20 Implementation Model: Mapping Designs to Code 301

PART IV ELABORATION ITERATION 2

21 Iteration 2 and its Requirements 319

22 GRASP: More Patterns for Assigning Responsibilities 325

23 Designing Use-Case Realizations with GoF Design Patterns 341
PART V ELABORATION ITERATION 3

24 [teration 3 and Its Requirements 383

25 Relating Use Cases 385

26 Modeling Generalization 393

27 Refining the Domain Model 411

28 Adding New SSDs and Contracts 431

29 Modeling Behavior in Statechart Diagrams 437

30 Designing the Logical Architecture with Patterns 447

31 Organizing the Design and Implementation Model Packages 475
32 Introduction to Architectural Analysis and the SAD 485

33 Designing More Use-Case Realizations with Objects and Patterns 507
3 Designing a Persistence Framework with Patterns 537

PART VI SpeciaL Torics

35 On Drawing and Tools 567

36 Introduction to Iterative Planning and Project Issues 575

37 Comments on Iterative Development and the UP 589

38 More UML Notation 603

@® N O oA

TABLE OF CONTENTS

Foreword xv

Preface xvii

PART | INTRODUCTION

1 Object-Oriented Analysis and Design 3
Applying UML and Patterns in OOA/D 3
Assigning Responsibilities 6
What Is Analysis and Design? 6
What Is Object-Oriented Analysis and Design? 7
An Example 7
The UML 10
Further Readings 11

2 Iterative Development and the Unified Process 13
The Most Important UP Idea: Iterative Development 14

Additional UP Best Practices and Concepts 18
The UP Phases and Schedule-Oriented Terms 19
The UP Disciplines (was Workflows) 20
Process Customization and the Development Case 23
The Agile UP 24
The Sequential “Waterfall” Lifecycle 25
You Know You Didn’t Understand the UP When... 26
Further Readings 26
3 Case Study: The NextGen POS System 29
The NextGen POS System 29
Architectural Layers and Case Study Emphasis 30
The Book’s Strategy: Iterative Learning and Development 31
PART Il INCEPTION
4 Inception 35
Inception: An Analogy 36
Inception May Be Very Brief 36
What Artifacts May Start in Inception? 37
You Know You Didn’t Understand Inception When... 38
5 Understanding Requirements 41
Types of Requirements 42
Further Readings 43

6 Use-Case Model: Writing Requirements in Context 45
Goals and Stories 46

Background 46

Use Cases and Adding Value 47

Use Cases and Functional Requirements 48

Use Case Types and Formats 49

Fully Dressed Example: Process Sale 50

Explaining the Sections 54

Goals and Scope of a Use Case 59

Finding Primary Actors, Goals, and Use Cases 63
Congratulations: Use Cases Have Been Written, and Are Imperfect 67
Write Use Cases in an Essential Ul-Free Style 68

Actors 70

Use Case Diagrams 71

Requirements in Context and Low-Level Feature Lists 73
Use Cases Are Not Object-Oriented 75

vii

7

TABLE OF CONTENTS

Use Cases Within the UP 75

Case Study: Use Cases in the NextGen Inception Phase 79
Further Readings 79

UP Artifacts and Process Context 81

Identifying Other Requirements 83

NextGen POS Examples 84

NextGen Example: (Partial) Supplementary Specification 84
Commentary: Supplementary Specification 88
NextGen Example: (Partial) Vision 91
Commentary: Vision 93

NextGen Example: A (Partial) Glossary 98
Commentary: Glossary (Data Dictionary) 99
Reliable Specifications: An Oxymoron? 100
Online Artifacts at the Project Website 101

Not Much UML During Inception? 101

Other Requirement Artifacts Within the UP 101
Further Readings 104

UP Artifacts and Process Context 105

From Inception to Elaboration 107

Checkpoint: What Happened in Inception? 108

On to Elaboration 109

Planning the Next Iteration 110

Iteration 1 Requirements and Emphasis: Fundamental OOA/D Skills
What Artifacts May Start in Elaboration? 113

You Know You Didn’t Understand Elaboration When... 114

PART lll ELABORATION ITERATION 1

9

10

viii

Use-Case Model: Drawing System Sequence Diagrams 117

System Behavior 118

System Sequence Diagrams 118

Example of an SSD 119

Inter-System SSDs 120

SSDs and Use Cases 120

System Events and the System Boundary 120
Naming System Events and Operations 121
Showing Use Case Text 122

SSDs and the Glossary 122

SSDs Within the UP 123

Further Readings 124

UP Artifacts 125

Domain Model: Visualizing Concepts 127

Domain Models 128

Conceptual Class Identification 132

Candidate Conceptual Classes for the Sales Domain 136
Domain Modeling Guidelines 137

Resolving Similar Conceptual Classes—Register vs. “POST” 139
Modeling the Unreal World 140

Specification or Description Conceptual Classes 140

UML Notation, Models, and Methods: Multiple Perspectives 144
Lowering the Representational Gap 146

Example: The NextGen POS Domain Model 148

Domain Models Within the UP 148

Further Readings 150

112

11

Domain

Domain

TABLE OF CONTENTS

UP Artifacts 151

Model: Adding Associations 153
Associations 153

The UML Association Notation 154

Finding Associations—Common Associations List 155
Association Guidelines 157

Roles 157

How Detailed Should Associations Be? 159
Naming Associations 160

Multiple Associations Between Two Types 161
Associations and Implementation 161
NextGen POS Domain Model Associations 162
NextGen POS Domain Model 163

Model: Adding Attributes 167

Attributes 167

UML Attribute Notation 168

Valid Attribute Types 168

Non-primitive Data Type Classes 170

Design Creep: No Attributes as Foreign Keys 172
Modeling Attribute Quantities and Units 173
Attributes in the NextGen Domain Model 174
Multiplicity From SalesLineltem to Item 175
Domain Model Conclusion 175

Use-Case Model: Adding Detail with Operation Contracts 177

Contracts 177

Example Contract: enterltem 178

Contract Sections 179

Postconditions 179

Discussion—enterItem Postconditions 182

Writing Contracts Leads to Domain Model Updates 183
When Are Contracts Useful? Contracts vs. Use Cases? 183
Guidelines: Contracts 184

NextGen POS Example: Contracts 185

Changes to the Domain Model 186

Contracts, Operations, and the UML 186

Operation Contracts Within the UP 188

Further Readings 191

From Requirements to Design in this [teration 193

Iteratively Do the Right Thing, Do the Thing Right 193
Didn’t That Take Weeks To Do? No, Not Exactly. 194
On to Object Design 194

Interaction Diagram Notation 197

GRASP:

Sequence and Collaboration Diagrams 198
Example Collaboration Diagram: makePayment 199
Example Sequence Diagram: makePayment 200
Interaction Diagrams Are Valuable 200

Common Interaction Diagram Notation 201
Basic Collaboration Diagram Notation 202

Basic Sequence Diagram Notation 208
Designing Objects with Responsibilities 215
Responsibilities and Methods 216
Responsibilities and Interaction Diagrams 217
Patterns 218

TABLE OF CONTENTS

GRASP: Patterns of General Principles in Assigning Responsibilities 219
The UML Class Diagram Notation 220
Information Expert (or Expert) 221
Creator 226
Low Coupling 229
High Cohesion 232
Controller 237
Object Design and CRC Cards 245
Further Readings 246
17 Design Model: Use-Case Realizations with GRASP Patterns 247
Use-Case Realizations 248
Artifact Comments 249
Use-Case Realizations for the NextGen Iteration 252
Object Design: makeNewSale 253
Object Design: enterltem 255
Object Design: endSale 260
Object Design: makePayment 264
Object Design: startUp 269
Connecting the Ul Layer to the Domain Layer 273
Use-Case Realizations Within the UP 276
Summary 278
18 Design Model: Determining Visibility 279
Visibility Between Objects 279
Visibility 280
[llustrating Visibility in the UML 284
19 Design Model: Creating Design Class Diagrams 285
When to Create DCDs 285

Example DCD 286
DCD and UP Terminology 286
Domain Model vs. Design Model Classes 287
Creating a NextGen POS DCD 287
Notation for Member Details 296
DCDs, Drawing, and CASE Tools 298
DCDs Within the UP 298
UP Artifacts 299

20 Implementation Model: Mapping Designs to Code 301
Programming and the Development Process 302
Mapping Designs to Code 304
Creating Class Definitions from DCDs 304
Creating Methods from Interaction Diagrams 307
Container/Collection Classes in Code 309
Exceptions and Error Handling 309
Defining the Sale--makeLineltem Method 310
Order of Implementation 311
Test-First Programming 311
Summary of Mapping Designs to Code 313
Introduction to the Program Solution 313

PART IV ELABORATION ITERATION 2

21 Iteration 2 and its Requirements 319
Iteration 2 Emphasis: Object Design and Patterns 319
From Iteration 1to 2 319
Iteration 2 Requirements 321

