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“This edition contains Larman’s usual accurate and thoughtful writing. It is a very
good book made even better.”

—Alistair Cockburn, author, Writing Effective Use Cases and Surviving OO
Projects.

“People often ask me which is the best book to introduce them to the world of OO
design. Ever since I came across it Applying UML and Patterns has been my unre-
served choice.”

—Martin Fowler, author, UML Distilled and Refactoring.

“This book makes learning UML enjoyable and pragmatic by incrementally introduc-
ing it as an intuitive language for specifying the artifacts of object analysis and
design. It is a well written introduction to UML and object methods by an expert
practitioner.”

—Cris Kobryn, key contributor to UML 1.x specifications, and chair of the UML
Revision Task Force and UML 2.0 Working Group.

“Too few people have a knack for explaining things. Fewer still have a handle on
software analysis and design. Craig Larman has both.”

—dJohn Vlissides, author, Design Patterns and Pattern Hatching.



FOREWORD

Programming is fun, but developing quality software is hard. In between the
nice ideas, the requirements or the “vision,” and a working software product,
there is much more than programming. Analysis and design, defining how to
solve the problem, what to program, capturing this design in ways that are easy
to communicate, to review, to implement, and to evolve is what lies at the core of
this book. This is what you will learn.

The Unified Modeling Language (UML) has become the universally-accepted
language for software design blueprints. UML is the visual language used to
convey design ideas throughout this book, which emphasizes how developers
really apply frequently used UML elements, rather than obscure features of the
language.

The importance of patterns in crafting complex systems has long been recog-
nized in other disciplines. Software design patterns are what allow us to
describe design fragments, and reuse design ideas, helping developers leverage
the expertise of others. Patterns give a name and form to abstract heuristics,
rules and best practices of object-oriented techniques. No reasonable engineer
wants to start from a blank slate, and this book offers a palette of readily usable
design patterns.

But software design looks a bit dry and mysterious when not presented in the
context of a software engineering process. And on this topic, I am delighted that
for his second edition, Craig Larman has chosen to embrace and introduce the
Unified Process, showing how it can be applied in a relatively simple and low-
ceremony way. By presenting the case study in an iterative, risk-driven, archi-
tecture-centric process, Craig’s advice has realistic context; he exposes the
dynamics of what really happens in software development, and shows the exter-
nal forces at play. The design activities are connected to other tasks, and they no
longer appear as a purely cerebral activity of systematic transformations or cre-
ative intuition. And Craig and I are convinced of the benefits of iterative devel-
opment, which you will see abundantly illustrated throughout.

So for me, this book has the right mix of ingredients. You will learn a systematic
method to do Object-Oriented Analysis and Design (OOA/D) from a great
teacher, a brilliant methodologist, and an “O0 guru” who has taught it to thou-
sands around the world. Craig describes the method in the context of the Uni-



FOREWORD

fied Process. He gradually presents more sophisticated design patterns—this will
make the book very handy when you are faced with real-world design challenges.
And he uses the most widely accepted notation.

I'm honored to have had the opportunity to work directly with the author of this
major book. I enjoyed reading the first edition, and was delighted when he asked me
to review the draft of his second edition. We met several times and exchanged many
e-mails. I have learned much from Craig, even about our own process work on the
Unified Process and how to improve it and position it in various organizational con-
texts. I am certain that you will learn a lot, too, in reading this book, even if you are
already familiar with OOA/D. And, like me, you will find yourself going back to it, to
refresh your memory, or to gain further insights from Craig’s explanations and expe-

rience. N

In an iterative process, the result of the second iteration improves on the first. Simi-
larly, the writing matures, I suppose; even if you have the first edition, you'll enjoy
and benefit from the second one.

Happy reading!

Philippe Kruchten
Rational Fellow

Rational Software Canada
Vancouver, BC



Design robust and
maintainable
object systems.

Follow a roadmap
through require-
ments, analysis,
design, and coding.

Use the UML to
illustrate analysis
and design models.

Improve designs by
applying the “gang-
of-four” and
GRASP design
patterns.

Learn efficiently by
following a refined
presentation.

Learn from a
realistic exercise.
Translate to code.

Design a layered
architecture.

PREFACE

Thank you for reading this book! This is a practical introduction to object-ori-
ented analysis and design (OOA/D), and to related aspects of iterative develop-
ment. I am grateful that the first edition was received as a popular introduction
to OOA/D throughout the world, translated into many languages. Therefore,
this second edition builds upon and refines—rather than replaces—the content
in the first. I want to sincerely thank all the readers of the first edition.

Here is how the book will benefit you.

First, the use of object technology has proliferated in the development of soft-
ware, and mastery of OOA/D is critical for you to create robust and maintain-
able object systems.

Second, if you are new to OOA/D, you are understandably challenged about
how to proceed through this complex subject; this book presents a well-defined
roadmap—the Unified Process—so that you can move in a step-by-step process
from requirements to code.

Third, the Unified Modeling Language (UML) has emerged as the standard
notation for modeling; so it is useful for you to be conversant in it. This book
teaches the skills of OOA/D using the UML notation.

Fourth, design patterns communicate the “best practice” idioms and solutions
that object-oriented design experts apply in order to create systems. In this book
you will learn to apply design patterns, including the popular “gang-of-four” pat-
terns, and the GRASP patterns which communicate fundamental principles of
responsibility assignment in object design. Learning and applying patterns will
accelerate your mastery of analysis and design.

Fifth, the structure and emphasis in this book is based on years of experience in
training and mentoring thousands of people in the art of OOA/D. It reflects that
experience by providing a refined, proven, and efficient approach to learning the
subject so your investment in reading and learning is optimized.

Sixth, it exhaustively examines a single case study—to realistically illustrate
the entire OOA/D process, and goes deeply into thorny details of the problem; it
is a realistic exercise,

Seventh, it shows how to map object design artifacts to code in Java.

Eighth, it explains how to design a layered architecture and relate the graphi-
cal user interface layer to domain and technical services layers.

xvii



Design a
framework.
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PREFACE

Finally, it shows you how to design an object-oriented framework and applies
this to the creation of a framework for persistent storage in a database.

Objectives

The overarching objective is this:

Help students and developers create object designs through the application
of a set of explainable principles and heuristics.

By studying and applying the information and techniques presented here, you
will become more adept at understanding a problem in terms of its processes
and concepts, and designing a solid solution using objects.

Intended Audience

This book is an introduction to OOA/D, related requirements analysis, and to
iterative development with the Unified Process as a sample process; it is not
meant as an advanced text. It is for the following audience:

m  Developers and students with experience in an object-oriented programiming
language, but who are new—or relatively new—to object-oriented analysis
and design.

®  Students in computer science or software engineering courses studying
object technology.

8 Those with some familiarity in OOA/D who want to learn the UML notation,
apply patterns, or who want to sharpen and deepen their analysis and
design skills.

Prerequisites

Some prerequisite knowledge is assumed—and necessary—to benefit from this

book:

®  Knowledge and experience in an object-oriented programming language

such as Java, C#, C++, or Smalltalk.

Knowledge of fundamental object technology concepts, such as class,
instance, interface, polymorphism, encapsulation, interfaces, and inherit-
ance.

Fundamental object technology concepts are not defined.

Java Examples

In general, the book presents code examples in Java or discusses Java imple-
mentations, due to its widespread familiarity. However, the ideas presented are
applicable to most—if not all—object-oriented programming languages.
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Book Organization

The overall strategy in the organization of this book is that analysis and design
topics are introduced in an order similar to that of a software development
project running across an “inception” phase (a Unified Process term) followed by
three iterations (see Figure P.1).

1. The inception phase chapters introduce the basics of requirements analysis.

2. TIteration 1 introduces fundamental OOA/D and how to assign responsibili-
ties to objects.

3. Iteration 2 focuses on object design, especially on introducing some high-use
“design patterns.”

4. Iteration 3 introduces a variety of subjects, such as architectural analysis
and framework design.

Topics such as OO analysis and OO
design are incrementally introduced in
iteration 1, 2, and 3.

Figure P.1. The organization of the book follows that of a development project.

Web-Related Resources

m  Please see www.craiglarman.com for articles related to object technology,
patterns, and process.

m  Some instructor resources can be found at www.phptr.com/larman.

Enhancements to the First Edition

While retaining the same core as the first edition, the second is refined in many
ways, including:

m  Use cases are updated to follow the very popular approach of [Cockburn01].

m The well-known Unified Process (UP) is used as the example iterative pro-
cess within which to introduce OOA/D. Thus, all artifacts are named accord-
ing to UP terms, such as Domain Model.

m New requirements in the case study, leading to a third iteration.

XiX
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m Updated treatment of design patterns.
m Introduction to architectural analysis.

Introduction of Protected Variations as a GRASP pattern.

[
a A 50/50 balance between sequence and collaboration diagrams.

® The latest UML notation updates.

m Discussion of some practical aspects of drawing using whiteboards or UML

CASE tools.
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