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Preface

Statistics uses theoretical models and techniques to help applied researchers to extract,
and infer, real-life, scientific, medical, and social conclusions from numerical data,
which are subject to random uncertainty. For any particular study, it is important to
combine theoretical and computational resources, together with applied skills, and an
ability to interact with experts with knowledge relating to the background and usefulness
of the data. ‘ :

Many studies and data sets are nonstandard, and it is not always possible to provide a
completely convincing analysis based upon preexisting techniques. Therefore, statisti-
cians frequently need to develop new techniques, on line, for a particular practical study.
Furthermore, the statistical state of the art is continuously evolving, and it is therefore
important for researchers to continue to develop the available statistical methodology.
Finally, when existing methodology is available, it is important that this should be ap-
plied with specific knowledge of the subtleties of the assumptions involved, together
with their consequences.

There are nowadays two main streams of statistical thought. We will refer to these as
the “Fisherian” and the “Bayesian™ philosophies. The Fisherian philosophy is named
after Sir Ronald Fisher and combines the “frequency approach” (unbiased estimators,
hypothesis tests, and confidence intervals) with likelihood methods. The Fisherian phi-
losophy also includes the “fiducial approach,” an incomplete method, suggested by
Fisher, which attempts to achieve some of the advantages of the Bayesian approach
(e-g., good conditional inference, given the observed values of the data, combined with
appealing frequency properties when repeating the experiment a number of times under
identical conditions), but without the assumption of a “prior distribution.”

The Bayesian philosophy is named after the Reverend Thomas Bayes and refers
to such concepts as “prior and posterior knowledge,” “prior, posterior, and predic-
tive distributions,” and “Bayes decision rules and estimators.” The Bayesian approach
possesses many advantages, even when viewed from a Fisherian viewpoint, in partie-
ular its inherent long-run frequency properties. In practical terms, this means that if
computer simulations are used to compare the mean squared error, prediction error,
coverage probability, or power of different procedures, then Bayesian methods can per-
form remarkably well. This validation is an essential ingredient, when combined with
the construction of statistical techniques, and provides just one substantial justification

~of the Bayesian paradigm. Other advantages are summarized by Berger (1985) and
Bernardo and Smith (1994), and in our introductions to Chapters 2, 3, 5, and 6 of the
current text.
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Chapter 1 describes a number of Fisherian procedures, which comprise important
background to the Bayesian approach. It is, for example, essential for the reader to
be able to construct and understand likelihood functions before attempting Bayesian
techniques. The reader should also understand basic data analysis.

Chapter 2 provides an easy introduction to Bayesian ideas and utilizes easy forms of
Bayes’ theorem when the parameter space is discrete. These are of particular importance
in medical and legal applications.

Chapter 3 develops the Bayesian paradigm when there is a single unknown parame-
ter. In such cases, a univariate probability distribution readily summarizes the posterior
information. Frequency propemes of related estimators and decision rules are devel-
oped.

Chapter 4 provides a break to some of the technicalities and considers the “expected
utility hypothesis” and its role in financial decision making. Some extensions to the
expected utility hypothesis are considered.

Chapter 5 extends the ideas of Chapter 3 to statistical models with several parameters
Approaches to the linear statistical model, categoncal data analysis, and time-series
analysis are included.

Chapter 6 provides advanced studies of prior structures, posterior smoothing, and
Bayes—Stein estimation. Many of the techniques again achieve appealing frequency
properties. Computational techniques, already mentioned in Chapter §, for approxi-
mating or simulating high-dimensional numerical integrations, for example, for pro-
viding adequate finite sample size analyses of nonlinear models, are developed further.
These include Laplacian methods, importance sampling, and Markov Chain Monte
Carlo Methods (MCMC). :

The text contains 49 worked examples and 148 self-study exercises, which relate to
special cases of methodology more broadly explained in the main body of the text. The
reader is thereby provided with layers of knowledge, which can be studied at different
levels. The volume progressively develops a number of special themes in a possibly
unique manner. A large number of further practical examples are described throughout
the text.

The bibliography mtegrates Bayesian statistics w1th other statistical methodologies
and with interdisciplinary research. While the Bayesian references represent the last four
decades of research, they do not provnde an exhaustive reference list for the Bayesian
literature.

Much of the material in this text has been previously taught to graduate students in
statistics, economics, and business attending a Bayesian Decisions course at the Uni-
versity of Wisconsin-Madison, and to graduate students attending a Bayesian Inference
course at the University of California at Santa Barbara. The text is also appropriate for
the following readerships: - .

¢ Students attending a statistics course with a mixture of Fisherian and Bayesian
philosophies, at final-year undergraduate or at Master’s-degree level. In this case,
the instructors should concentrate on the easier parts of Chapter 1, together with
Chapters 2 and 3, and the easier parts of Chapter 5. If the course is taught
within an economics graduate program, then Chapter 4 and Sections 5.3-5.7
will also be of interest, together with the simulation procedures of Chapter 6.
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* Interdisciplinary research specialists wishing to develop statistical models and
analyses relating to their own area. We have previously used techniques described
in this text for interdisciplinary research in many areas, including geology, psy-
chometrics, medicine, animal science, genetics, biology, archaeology, forensic
science, civil engineering, plant science, pathology, and physics. We have been
involved in many practical collaborations, as directors of statistical laborato-
ries at the University of Edinburgh and The University of California, with these
objectives in mind.

* Doctoral students, and other researchers, in statistics. For example, Chapters
5 and 6 will help you to achieve the research frontiers in Bayesian statistics.
Chapters 3, 5, and 6 would provide useful material for an advanced graduate
course in statistics.

The first co-author wishes to acknowledge his mentors Anne F. S. Mitchell, Dennis
V. Lindley, and A. Philip Dawid for teaching him Bayesian statistics at Imperial College
and University College, London. His early Bayesian ideas, also frequently employed
in this volume, were further influenced by James M. Dickey, Irving Jack Good, Adrian
F. M. Smith, Tony O’Hagan, Jim Q. Smith, Patricia M. E. Altham, and P. Jeffrey
Harrison. The second co-author wishes to acknowledge David V. Hinkley and Raisa
Feldman for their encouragement. Both co-authors are indebted to Arnold Zellner,
George Tiao, and Kam-Wah Tsui for their outstanding help and encouragement. They
would also like to thank George E. P. Box, Jeff C. F. Wu, Irwin Guttman, Colin G.
Aitken, Grace Wahba, Nan Laird, Michael Newton, Greg Reinsel, Bob Miller, Douglas
Bates, and Richard A. Johnson for their previous advice on Bayesian and other related
methods contained in this volume. Peter Lee has provided very helpful information
in relation to his own writings. Suggestions by Bob Barmisch, Robert McCullough,
Peter Wakker, Derek Arthur, and John Searle are indicated in the text. Jerome Klotz has
advised us on gambling with roulette. Orestis Papasouliotis collaborated on some of
the recent methodological developments and prepared the mathematics and computer
program for the graphs in the cover design (these are the posterior densities of the
group means in an analysis of covariance model). Geoff McLachlan kindly provided us
with a copy of his computer package for multivariate mixtures. Rod Leonard described
valuable insights regarding the problem of spurious correlation in the context of the
chemical industry.

We should also acknowledge the many graduate students attending our Bayesian
courses who have helped or advised us over the years. These include, but are not lim-
ited to, Jean Deichtmann, Josep Ginebra-Molins, Robert Tempelman, Taskin Atilgan,
Christian Ritter, Tom Chiu, and Jen-Ting Wang.

We would like to thank the following publishers and associations for granting us per-
mission to reproduce previously published material: John Wiley & Sons for Figure 5.2.1
from T. Leonard and J. S. J. Hsu (1994), The Bayesian analysis of categorical data - a
selective review, in P. R. Freeman and A. F. M. Smith (eds.), Aspects of Uncertainty:
A Tribute to D. V. Lindley, copyright John Wiley & Sons Limited; the American Ed-
ucational Research Association for Tables 5.2.4 and 5.2.5 from T. Leonard and M. R.
Novick (1986), Bayesian full rank marginalization for two-way contingency tables,
Journal of Educational Statistics 11: 33-56; the Royal Statistical Society for Tables
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5.2.7 and 5.2.8 from T. Leonard (1975), Bayesian estimation methods for two-way
contingency tables, Journal of Royal Statistical Society, Ser. B, 37: 23-37; the Amer-
ican Statistical Association for Table 6.5.1 from L. Sun, J. S. J. Hsu, 1. Guttman, and
T. Leonard (1996), Bayesian methods for variance component models, Journal of the
American Statistical Association 91: 743-52; and the Institute of Statistical Mathe-
matics for Table 6.5.2 from T. Leonard (1984), Some data-analytic modifications to
Bayes-Stein estimation, Annals of the Institute of Statistical Mathematics 36: 11-21.

We would also like to thank Gloria Scallissi for her excellent typing of the first
draft of the manuscript, Lauren Cowles for her continued encouragement on behalf of
the publishers, David Tranah for some helpful suggestions, and Rena S. Wells for her
excellent copyediting. :
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Introductory Statistical Concepts

1.0 Preliminaries and Overview

When analyzing numerical data, subject to random uncertainty, which have been col-
lected in some scientific or real-life context, the first “golden rule” is to study the data,
for example, using dotplots, bivariate scatterplots, relative frequency histograms, and
contingency tables, before applying any formal statistical technique. Complicated data
sets deserve several hours, days, or even weeks of study. When studying a data set, you
should realize that data are not simply numbers but rather measurements or counts of
real entities (e.g., birthweights of babies, numbers of students passing a college test, a
measurement of a real chemical). Therefore, any tentative conclusions should be made
in the contexts of their meaning in relation to these entities, the real background of
the data, and how the data were collected. The same set of numerical data might mean
something entirely different in different scientific or real-life contexts.

Sometimes, upon viewing the data, you may discover a particularly distinctive fea-
ture that yields a decisive conclusion. In this case, it may not be necessary, or indeed
technically feasible, to proceed to a more formal analysis. For example, when investi-
gating the years of service of French generals during the late eighteenth century (see
Wetzler, 1983, Appendix), the conclusion was reached, upon viewing a distinctive spike
in the scatterplot, that a number of the generals had been rather abruptly dismissed dur-
ing the French Revolution. As another example, the State of Wisconsin was advised
during a court action in 1986, and based upon data for a carefully collected random
sample of n = 120 nursing homes, that the state was not adequately reimbursing the
actual costs (in dollars per patient per day) for nursing homes with costs in excess of
$45. This conclusion was validated by a distinctive blip in an otherwise linear bivariate
scatterplot. The State of Wisconsin conceded the case, largely because the state recog-
nized that data based upon a representative sample (a random sample of 120 nursing
homes from 600 nursing homes in Wisconsin) had been collected. George and Wecker
(1985) also emphasize the importance of using good statistics in legal cases.

For the first of these analyses, a computer package was not used, since formal sum-
mary statistics such as the sample mean and variance would not be particularly relevant.
For the second analysis, any attempt to fit a regression model without first carefully
considering the data could have led to many hours of fruitless analysis. Similarly, you
should try to avoid any “black box” data analytic technique that cannot be combined
with an interaction between your thought processes and the data. It is particularly
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Figure 1.0.1. A dotplot with a spike.
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Figure 1.0.2. A bivariate scatterplot with a blip.

important to consider the dotplots and scatterplots. Two further data plots, with a spike
and a blip, respectively, are described in Figures 1.0.1 and 1.0.2.

When viewing the data, we should pay careful attention to any outlying observations
(see Figure 1.0.3). Outliers are discussed in greater detail by Barnett and Lewis (1978).
For example, an outlier can enhance the apparent correlation between two variables that
may not otherwise be obviously correlated. Carefully consider the origins and meaning
of each outlier and make a careful intuitive decision as to whether or not to include
it in the sample. Don’t automatically reject outliers, using a “black box” technique,

ssasas a s

100 150 200 250 300
intelligence Quotient (1.Q. units)

Figure 1.0.3. A dotplot with an outlier.
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Figure 1.0.4. A scatterplot of the readings on n = 34 skeletons.

since they may be quite informative, particularly if they are part of a random sample.
Outliers can of course strongly influence any formal analysis, so it is essential to be
aware of them. We also regard it as important not to “impute” values for missing data,
since the modeling process for the whole data set can then become confused with the
imputation process, and the imputed values can exaggerate the information content
of the data. Likelihood and Bayesian methods will be able to readily handle missing
data problems (just integrate the sampling distribution with respect to the missing
observations), without any need to impute the data.

A typical archaeologists’ diagram for recording the (transformed) nitrogen and car-
bon content of skeletons compresses the carbon axis, creating a tendency for the skele-
tons to be divided into groups, according to nitrogen content alone. In cases where
there are two groups, the group of skeletons with the higher nitrogen content is often
taken to be Mesolithic, and the group with lower nitrogen content, Neolithic. In Figure
1.0.4, however, we report the entire scatterplot of the readings on n = 34 skeletons,
at the Lepenski Vir site in the Danube valley, but with the carbon scale substantially
broadened when compared with the archaeologists’ procedures. Our scatterplot sug-
gests division into several groups rather than two groups. Indeed, McLachlan’s package
for multivariate mixtures (McLachlan and Basford, 1988) indicates at least six groups.
The strong case for at least four or five groups can be confirmed by matching the groups
with gender. Further discussions of these data are provided by Bonsall, Lennon, and
McSweeney (1997).

For many data sets, it is also of interest either (a) to draw inferences about unknown
parameters of interest, for example, the density of a fluid, the recovery rate for patients
receiving a particular treatment, or population means, or proportions, or (b) to be able to
predict future observations, given the current and previous observations, for example,
economic forecasting, the forecasting of the paths of hurricanes, or the prediction of the
probability of failure of an engineering design. It is then useful to formalize the random
variability or uncertainty in the data, using a mathematical probability model, that is,
by taking the numerical observations to be realizations of random variables whose joint
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distribution comprises the mathematical or “sampling” model. A second “golden rule”
is to realize that “true models” are available only in limited situations. In many cases,
a variety of different models can be taken to plausibly represent a data set with a finite
number n of observations. Which model to use depends partly on statistical technique,
but also on the meaning and usefulness of the model in relation to the actual context of
the data.

Given a particular sampling model, a key question is, How should the applied statis-
tician use the data to draw inferences about any unknown parameters appearing in the
model? In this text, we adhere to the principle, Given the truth of the sampling model, all
information in the data is summarized by the likelihood function. The beautiful concept
of likelihood links all major philosophies of statistics and provides a cornerstone of the
Bayesian paradigm. Its properties and applications are developed in detail throughout
this chapter.

Itis possible to draw objectively acceptable conclusions from data, when appropriate
randomization is performed at the design stage, ideally with further replications of the
experiment, to detect unlucky randomizations. For uncontrolled data, an appropriate
model can be more difficult to find, and any conclusions are subjective and subject to
the effects of “lurking” or “confounding” variables (see Section 1.2 (H)). In general,
the conclusions are subject to “shades of subjectivity,” depending upon the way the
data are collected. For example, Brown et al. (1997) experienced considerable practical
difficulties in collecting a random sample while surveying primary-care patients for
drug or alcohol abuse. This was mainly the case because the interviewers were under
considerable pressure to complete their interviews within time periods agreed upon with
the clinics. The conclusions therefore needed to be qualified accordingly. There are also
frequently problems with the selective reporting of significant results (see Dawid and
Dickey, 1977). Furthermore, the sample size should be chosen with care at the design
stage (Donner, 1984).

Both Fisherian and Bayesian statistics depend heavily upon the concept of “prob-
ability.” What is probability? For a statistical experiment £, with sample space S,
mathematicians will tell you that a probability distribution p(-) is a real-valued func-
tion defined on all events (strictly speaking, events are constrained to be “measurable
subsets”) contained in § and satisfying the Kolmogorov axioms (see Exercise 1.1.1).
However, philosophically speaking, there are three main types of probabilities:

(A) Classical probability: This is defined by an “m over k” rule and is appropriate
whenever S = {ej, ez, ..., ex} possesses k outcomes that are judged to be
“equally likely,” and when an event A consists of m of these k outcomes. When
the equally likely assumption is made objectively, such as when the outcome
that occurs has been chosen at random from the k outcomes, or the equally
likely assumption has been tested by replicating the experiment numerous times
under identical conditions, then the probability p(4) of the event 4, defined by
p(A) = m/k,canbe referred to as an “objective classical probability.” When the
equally likely assumption is made subjectively (e.g., in the absence of evidence
to distinguish that any particular outcome is more likely than any other), then
p(A4) = m/k can be referred to as a “subjective classical probability.” See
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also Exercises 1.1.a and 1.1.b, which tell us that population proportions can be
identified with classical probabilities when individuals are chosen at random
from the population.

(B) Frequency probability: This will be defined by equation (1.1.1). The frequency
probability of an event is the long-run proportion of times the event occurs in a
large number of replications of the experiment. Objective classical probability
provides an example of frequency probability. Therefore, since the objective
classical probability that a roulette wheel will give a black number is 9/19, this
can also be used to predict the long-run performance of the wheel.

(C) Subjective probability: This measures an individual’s uncertainty in an event
and may vary from individual to individual. You may calibrate your subjec-
tive probabilities by judging whether events A are equally likely to events for
an objective auxiliary experiment, for example, the spinning pointer of Exer-
cise 1.1.k. In principle, you should assign probabilities to all events 4 € S
and ensure that your probabilities satisfy the Kolmogorov axioms. An individ-
ual who always tries to represent his uncertainty by a subjective probability
distribution is referred to as a “Bayesian.”

In general, a number between zero and unity can be regarded as a proba-
bility only if all other events in the sample space are envisioned, probabilities
are assigned to every event, and the laws of probability, as defined by the Kol-
mogorov axioms, are satisfied by the entire collection of probabilities (referred
to as a “probability distribution”). Many “probabilities” quoted-in science and
the media do not satisfy these conditions. For a sample space with either finitely
many outcomes or outcomes that can be arranged in an infinite sequence, it is
sufficient to check that the values assigned to the individual outcornes sum to
unity.

Consider situations where you possess some information regarding an unknown
parameter 6, for values of § lying in a parametric space ®. Then a big question is whether
or not you can represent this information by a subjective probability distribution on ©.
Some Bayesians say, You should always represent your information by a subjective
probability distribution on @, since there are some very simple axioms that tell us
that if you don’t act like this, then you are irrational, incoherent, and moreover, a
sure loser! We do not concur with this type of “normative approach,” largely because
we are unaware of an axiom system that is simple enough, when compared with the
Kolmogorov axioms, to justify this viewpoint. Moreover, some information, such as
medical knowledge or evidence in a court case, may be too diverse or eclectic to
be representable by probabilities. (These views are open to discussion. For a more
traditionally Bayesian approach, see Bernardo and Smith, 1994, section 2.3. Many
Bayesians believe that the uncertainty in any event is representable by a probability.
These aspects are pursued in Exercise 1.1.k and were previously debated by Leonard,
1980, and discussants. In our current chapter, we also debate the likelihood principle.
See Section 1.5 (C), Exercises 1.5.c—1.5.f.)

Other topics discussed in the current chapter include Akaike’s and Schwarz’s in-
formation criteria, AIC and BIC, for deciding between different choices of sampling
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models. These subtract a penalty per parameter from the log-likelihood function (see
equations 1.1.5 and 1.1.6). Information criteria are best justified and compared by com-
puter simulation of sets of observations from particular choices of their true sampling
model (see Sections 1.2 (F) and (G)). However, it is also important to consider all possi-
ble diagnostics, for example, residual analyses for regression models, when comparing
models (see Exercise 1.5.1) and also to consider the real-life or scientific reasonability
of the candidates.

Any formal statistical procedure, whether for inference about parameters, prediction
of future observations, or choice of sampling model, should possess desirable long-run
frequency properties (e.g., good mean squared error (MSE) for estimation of parame-
ters, accurate frequency coverage for approximate confidence intervals, high long-run
probability of choosing a reasonable model). In situations where these cannot be devel-
oped theoretically, computer simulations can produce accurate and meaningful results.
Graduate students and research specialists are encouraged to create novel statistical
procedures, but then always to check their new ideas by using frequency simulations.

In Section 1.3, procedures are described for obtaining approximate confidence in-
tervals that closely relate to the multivariate normal likelihood approximation (1.3.11)
and that refer to the concept of transforming the parameters to achieve possibly better
approximate normality. It is particularly important for the research worker to numeri-
cally check any theoretical suggestions when using theoretical approximations, since
the numerical work may produce some surprises or suggest adjustment terms to the ap-
proximations. For example, an “approximately normally distributed random variable
X might not yield values for p(X < ~1.96) or p(X > 1.96) that are particularly
close to 0.025, as required for an exact result. A variety of practical justifications of
the approximations employed in the text are included (e.g., Sections 1.2 (C), 1.4 (A)
and (B)). Some key properties of the multivariate normal distribution are developed in
Exercise 1.1.n.

A multivariate normal approximation (1.3.11) and related parameter transformations
will provide a central theme to a variety of Bayesian ideas developed later in the text,
such as the construction of “prior distributions” for several parameters, computational
procedures using importance sampling, Laplacian approximations, and rejection sam-
pling. It is more important for the reader to understand the multivariate normal approx-
imation and related approximate confidence intervals than to research the complicated
asymptotic theory of maximum likelihood estimators. For any particular model, it is
better to check the validity of (1.3.11) computationally and for finite sample sizes.

The works of Sir Ronald Fisher provide excellent background to this chapter. See,
for example, Fisher (1925, 1935, 1959) and Bennett (1971-4). Fisher always mixed his
techniques with practical common sense.

1.1 Sampling Models and Likelihoods

Numerical data often arise as a result of some statistical experiment £, that is, an
occurrence with a random or uncertain outcome. Suppose that on a single repetition of
£, you observe n numerical observations y1, ..., y». Let the sample space S denote
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the set of all possible realizations of the column vectory = (y1,..., y» yT. Then S
is a subset of n-dimensional Euclidean space R”, and the vector y consists of the n
observations, arranged in a column.

‘You might be prepared to make the quite strong assumption thaty = (y1, ..., ¥»
is anumerical realization of arandom vectorY = (Y1, ..., Y, )T (i.e., the column vector
of the random variables Y7, ..., Y,), which possesses some probability distribution P,
defined on events in S. For example, if £ can be repeated a large number of times under
identical conditions (i.e., replicated), then P = P(-) can be defined in terms of the
frequency notion of probability. That is, for any event 4 contained in S,

)T

P(A) = prob(Y € 4) = mleoorm(A), (1.1.1)

whenever the limit on the right-hand side exists, where the relative frequency 7, (4)
denotes the proportion of times thaty € A4, during the first m replications of £. However,
if £ can be performed only once, then the assumption that y is a numerical realization
of Y cannot always be made objectively. In some situations where you use random
sampling from a population or in other situations where outcomes of the experiment
can be regarded as equally likely, it will still be possible to define P in an objective
fashion. However, in many cases, part of the modeling process, that is, the specification
of P, will need to be performed subjectively and by reference to the scientific or
social background of the data. In many cases, P will be incompletely known, even
after a variety of modeling assumptions, and it is therefore frequently necessary to
infer reasonable choices of P, based upon the vector y of observations, for a single
repetition of £. ‘

For simplicity, assume that Y is either a continuous random vector with density
p(y), fory € §, or a discrete random vector with probability mass function p(y), for
y € S. Then, following the tenets of parametric statistical inference, you might wish
to make an assumption of the form

p) =10 (yeS 6ec0CRrY, (1.1.2)

where f(y | ) is specified as a function of bothy € Sand @ = 8y, ..., 6T € ©.
Here 8 is some vector of unknown parameters, and © is the parameter space, If n > k,
you can now make inferences about a £-dimensional vector 8 of unknown parameters,
rather than an entire function p(.).

Box (1980) distinguishes between this inference problem and the problem of statis-
tically modeling the choice of functional form for f. Modeling involves both creating
an appropriate choice for f in relation to the scientific background and checking the
reasonability of this choice against the data. Modeling requires substantial inductive
thought, while inference requires deduction, that is, the calculation of mathematical
conclusions, given that the functional form of the model is assumed true. This blend of
inductive and deductive thought is part of the inductive synthesis (Aitken, 1944, p. 3).

Following Birnbaum’s (1962) philosophy of “the irrelevance of observations not
actually observed” (e.g., why use procedures involving significance probabilities, min-
imum variance criteria, and confidence statements, which average across the sample
space?) and Edwards’s famous 1972 treatise on likelihood, it is a reasonable and widely




