Dynamic HTMLBS% (%)
Updated for Ajax and Web 2.0

HTML

The Definitive Reference

O’REILLY"

% k% Himi Danny Goodman &

B=IR

Dynamic HTML iU 5% (% EniR)
Dynamic HTML: The Definitive Reference

T M

IALLFRE
ke

O’REILLY*

Beijing *« Cambridge * Farnham + Koln < Paris * Sebastopol « Taipei * Tokyo

O'Reilly Media, Inc. 824 & d X 5 & AL & &

FEAFHMR

EHERS%E (CIP) ¥iE

Dynamic HTML A& %: $3f: ¥/ (¥£) &
2% (Goodman, D.) 3 — RENAR.—ER: REGKH
HAR#:, 2007.7

#5443 . Dynamic HTML: The Definitive Reference

ISBN 978-7-5641-0775-8

I.D.. O.i5.. I.@XAHRiciES, HIML -
Rt — 330 IV.TP312

H [l i A B 51 CIP iy (2007) 58074176 5

{LHERRAURE R A [T
E5: 10-2007-104 5

©2006 by O'Reilly Media, Inc.

Reprint of the English Edition, jointly published by O'Reilly Media, Inc. and Southeast University Press,
2007. Authorized reprint of the original English edition, 2006 O'Reilly Media, Inc., the owner of all rights to
publish and sell the same.

All rights reserved including the rights of reproduction in whole or in part in any form.
* L& #ad O'Reilly Media, Inc. ¥ #& 2006,

EXH RS & d K B IRAR B IR 2007, S B RR 69t R AR 4K B AT B i RRAU A 4K & AR BT A & —— O'Reilly
Media, Inc.##% 7T,

WASFRA, AR BERAT, KHGETR Ao 2 F A UETH X T4,

+ #/ Dynamic HTML®U& 2% (RENR)
TR/ sk

#HEi%if/ Edie Freedman, k(g

MR &1/ HmEAkFHhit (press.seu.edu.cn)

H Bk/ FEIRPHRERE 2 5 (BRB4WES 210096)

EN Rill /- v i ED Al BR 2 7]

F A/ T8TFEHK x 980 Z&K 16 A& 83.25 itk
MR &/ 200747 A 1AR 2007467 A4 1 RENRI
Ef ¥t/ 0001-3000 fif

45 5/ ISBN 978-7-5641-0775-8/TP - 123

E i/ 128.005¢ (L)

Dynamic HTML L &5 % (¥ eix)
Dynamic HTML: The Definitive Reference

T

O'Reilly Media, Inc. /43

O'Reilly Media, Inc. &5+ F7E UNIX, X, Internet fii b F X R LB BSIRELA
GIF RO AR 2 B, [EIRRBEL AR I 5E 4 .

MEHH4H (The Whole Internet User's Guide & Catalog) (¥4l %)2 i EHIEIEH
ZHHAREERSOEF 2 —) B GNN (HFHY Internet [T A FIRG AL B 3G), FE
WebSite (55— £ H PCHIWeb IR 45 24k {4), O'Reilly Media, Inc.— & 4bF Internet
KR BRI o

T2 BEARBEY, OReilly Media, Inc. R EREMHEILEBHRE — &5—
FHEEHM—RFER. SRLHHFEILES LR, O'Reilly Media, Inc. A EE
HHREHLL I 5%, XA O'Reilly Media, Inc.JER T —ANHE% 7 [T 3 At HH A 76
HItHiR 75§t . O'Reilly Media, Inc. i f 4wt A RLARIEIRBF R, REFRTRR
M AREK, OReilly Media, Inc. B ¥ £ B EMIEEBEA — 14 & R ML S
BRBEARERK, BWER, MAEREZEME, OReilly Media, Inc. k1t i1 K it itb
et E$. B O'Reilly Media, Inc. B#H 5H BN FBERE, HiLL O'Reilly
Media, Inc. Wi FEFEEH 2B+,

tH higi5 A

B TR AR B R BN B, AR IEFES A — AR R R AOFH . HE
FUERBR B ATl A= | Bl S0 H 3% A 6204k T E KR, AT,
HHBEHL AT H R T 397 B 2 e Mo R A R R, b T BD L e R A R FE 55— e]
TRESBFOHA, Kik% HIRI%E O'Reilly Meida, Inc.ik B, 4K
531 %A AMRB IR AR RE LT RAREH B AL, LIS Mk
PRI RRAEE ., b, BERBH IR ESENEDS ‘RS MR, HE K
HE%” RALIERE, '

BANA AR, B[SERTBREREX B AHERTLAEARA R PSRBT R/
AR AR M AL B2 SR TAER Bt B, Xt RN LR R RA TR . hROHE
EERHERAE LRI,

Bt AR RO RCEN R B 45, 43 -

o (BEABRMERXMROHSIEITY (RER)
* (Ajax on Rails) (BEfR)

e (Java5 XML FE=R) (FZENAR)

o (%3] MySQLY (B4ENER)

e (Linux Kernel Hi AFMY (RENAR)

* (Dynamic HTML /U @&% F=hR) (RZENR)
e (ActionScript 3.0 Cookbook) (EZENER)

e (CSS:The Missing Manual) (E4E[IfR)

* (Linux HARFM FEHIRY (FENRR)

e (Ajax onJava) (FZENAR)

e (WCF Service ZRf2) (RZENKR)

e (JavaScript SUBFERE B HAR) (FEENRR)

* (CSSHBUEAEFE F=HRY (REENAR)

* (HARRZHE FMRY GEER)

e (%>] JavaScript) (BZENARR)

* (Rails Cookbook) (FZENAR)

About the Author

Danny Goodman has been writing about personal computers and consumer elec-
tronics since the late 1970s. In 2006, he celebrated 25 years as a freelance writer and
programmer, having published hundreds of magazine articles, several commercial
software products, and three dozen computer books. Through the years, his most
popular book titles—on HyperCard, AppleScript, JavaScript, and Dynamic
HTML—have covered programming environments that are accessible to nonprofes-
sionals yet powerful enough to engage experts. He is the author of O’Reilly’s popular
JavaScript and DHTML Cookbook.

To keep up to date on the needs of web developers for his recent books, Danny is
also a programming consultant to some of the industry’s top intranet development
groups and corporations. His expertise in implementing sensible cross-browser
client-side scripting solutions is in high demand and allows him to, in his words, “get
code under my fingernails while solving real-world problems.”

Danny was born in Chicago, Illinois during the Truman Administration. He earned a
B.A. and M.A. in Classical Antiquity from the University of Wisconsin, Madison. He
moved to California in 1983 and lives in a small San Francisco—area coastal commu-
nity, where he alternates views between computer screens and the Pacific Ocean.

Colophon

The animal on the cover of Dynamic HTML: The Definitive Reference, Third Edition,
is a flamingo. Flamingos are easily identifiable by their long legs and neck, turned-
down bill, and bright color, which ranges from white to pink to bright red. There are
five living species of flamingo, encompassing the family Phoenicopteridae. Flamingos
are found in Asia, Africa, Europe, South American, and the Caribbean islands.
Although wild flamingos are sometimes seen in Florida, they do not naturally nest in
the United States.

Flamingos feed on small crustaceans, algae, and other unicellular organisms. Their
unusually shaped bills provide flamingos with a unique food-filtering system. A
flamingo eats by placing its head upside down below the water surface and sucking
in water and small food particles through the serrated edges of its bill. The flamingo
then pushes its thick, fleshy tongue forward, forcing the water out but trapping the
food particles on lamellae inside the beak.

In the wild, flamingos tend to live in remote, difficult-to-reach areas. In the suburbs,
however, they stand guard over many a front lawn.

The cover image is from Dover Pictorial Archive. The cover font is Adobe ITC Gara-
mond. The text font is Linotype Birka; the heading font is Adobe Myriad
Condensed; and the code font is LucasFont’s TheSans Mono Condensed.

Table of Contents

Partl. Dynamic HTML Reference

1. HTMLand XHTMLReferenceco.oiiiiiiiiiiiinininanns 3
Attribute Value Types 4
Shared HTML Element Attributes 9
Shared Event Handler Attributes 17
Alphabetical Tag Reference 18

2. Document Object Model Reference 304
Property Value Types 305
About client- and offset- Properties 307
Default Property Values 310
Events 310
Static W3C HTML DOM Objects 311
Shared Object Properties, Methods, and Events 312
Alphabetical Object Reference 377

v EventReferente ghckodcs asil i bt 903
Alphabetical Event Reference 904

4, Style SheetPropertyReference..................................... 930
Property Value Types 931
Selectors 933
Pseudo-Element and Pseudo-Class Selectors 934
At-Rules 938

vii

Conventions
Alphabetical Property Reference

5. JavaScript Core Language Reference
About Static Objects
Mozilla Get and Set Methods
ECMAScript for XML (E4X)
ECMAScript Reserved Keywords
Core Objects
Operators
Control Statements
Miscellaneous Statements
Special (Escaped) String Characters

Partll. Cross References

6. HTML/XHTML AttributelIndex
7. DOMPropertylndexo,
G DORMMEEIRIINKG c.oc0vv0 i s e oo i
9. DOMEventsIngexo ool o odat g oo

Part lll. Appendixes

ColorNamesandRGBValues
HTML Character Entitieso oitiadie oo o e i g

Keyboard Event CharacterValues

P .o cmm. g

Editable ContentCommands
E. HTML/XHTMLDTDSupport,

F. The Mozilla BrowserVersionTrail

viii | Table of Contents

CHAPTER 3
Event Reference

The purpose of this chapter is to provide a list of every event type implemented in
current mainstream browsers, as well as those specified in the W3C recommenda-
tion for the Events module of DOM Level 2. Events are listed alphabetically by their
type names—the same format used by the W3C DOM Events modules. Event bind-
ings using an element object property or the IE attachEvent() method require the
“on” prefix to the event type name. So that you can readily see whether a particular
entry applies to the browser(s) you must support, a version table accompanies each
term listed in the following pages. This table tells you at a glance the version of Inter-
net Explorer (IE), pre-Mozilla Netscape Navigator (NN), Mozilla (Moz), Apple Safari
(Saf), Opera (starting from version 7), and W3C DOM specification in which the
term was first introduced.

If a listing for IE signifies Win or Mac, it means that the event is supported only for
the Windows or Macintosh operating system version. IE 5.5 or later is for Windows
only. Note that a large number of event types are supported only in IE for Windows,
and many of those apply only to data binding applications. If you are concerned with
cross-browser deployment, pay very close attention to the browser compatibility
charts to find the events that work on a broad array of browser brands and versions.
Online Section VI contains many guidelines and examples for blending otherwise
incompatible event mechanisms into routines that work on many browser types.

In the following listings below, the “Bubbles” category indicates whether the event
follows event bubbling propagation (in browsers that support event bubbling,
described in Online Section VI), while the “Cancelable” category means that the
default action usually associated with the event (such as navigating to a new URL
when clicking on an a element) can be canceled by script statements, thus averting
the normal operation. The category named “Typical Targets” usually points to broad
types of elements to which the event type may be applied. For more specific element
support for each event type, consult Chapter 9.

203

Alphabetical Event Reference

abort IE3 NN4 Mozall Safall Opall DOM2
Bubbles: No; Cancelable: No

Fires if an img element’s content fails to complete loading due to user interruption (e.g.,
clicking Stop or rapidly navigating to another page) or other failure (e.g., timeout due to
network traffic). The W3C DOM applies this event only to the object element, which, in
the W3C standards view (but not yet widely supported in browsers), is the desired way to
embed an image into a page.

Typical Targets The img element.

activate IE5.5 NNn/a Mozn/a Safn/a Opn/a DOMn/a
Bubbles: Yes; Cancelable: No

Fires when an object becomes the active object. Giving an object focus makes it active, but
a rendered element can be the active element without having focus. Only one element at a
time may be active. See the setActive() method of shared objects in Chapter 2. If an
element has received focus, the activate event fires before the focusin and then the focus
events.

Typical Targets All rendered elements, plus the document and window objects.

afterprint, beforeprint IE5(Win) NNn/a Mozn/a Safn/a Opn/a DOMn/a
Bubbles: No; Cancelable: No

Fires after the user clicks the Print button in the Print dialog box before content is assem-
bled for the printer (beforeprint) and after the data has been sent to the printer
(afterprint). You can use these events to trigger functions that modify a style sheet or
other content rendering of a page (so that a potentially different-looking page reaches the
printer) and then restore the page for viewing on the screen. This technique can work in
lieu of style sheet media settings.

Typical Targets The body and frameset elements, plus the window object.

afterupdate IE4(Win) NNn/a Mozn/a Safn/a Opn/a DOMn/a
Bubbles: Yes; Cancelable: No

Fires after data being sent to a writable data source object (through the IE data binding
mechanism) has successfully updated the database.

Typical Targets Elements that accept data input and support data binding.

904 | Chapter3: EventReference

beforecut

beforeactivate IE6 NNn/a Mozn/a Safn/a Opn/a DOMn/a

Bubbles: Yes; Cancelable: Sometimes

Fires just before an object is to become the active object. Giving an object focus makes it
active, but a rendered element can be the active element without having focus. Only one
element at a time may be active. See the setActive() method of shared objects in
Chapter 2. If an element received focus, related events fire in the following sequence:
beforeactivate, activate, focusin, and focus.

If you cancel the beforeactivate event, the element does not become active, nor does it
receive focus, but only if the intended focus action occurs from explicit user action
(clicking and tabbing). An element blocked from receiving focus causes the focus to go to
another element: to the next focusable element in tabbing order (when the user tabs to the
blocked element) or to the next outermost focusable parent element in the document tree
(when a user clicks on the blocked element). Activating or giving focus to an element via
the setActive() or focus() method cannot be blocked by canceling this event.

Typical Targets All rendered elements, plus the document and window objects.

beforecopy IE5(Win) NNn/a Mozn/a Saf1.3/2 Opn/a DOMn/a
Bubbles: Yes; Cancelable: Yes

Fires just before a user-initiated Copy command (via the Edit menu, a keyboard shortcut,
or a context menu) completes the task of moving the selected content to the system clip-
board. At this point in the copy sequence, a function invoked by this event handler can
perform additional or substitute processing for the normal system copy action. For
example, additional information from the element, such as effective style information of
the element containing selected text, can be preserved in the IE clipboardData object (see
Chapter 2) for later processing with the help of the beforepaste event handler. Canceling
the beforecopy event does not prevent user copying of a selection.

In Internet Explorer, the “before” events fire when the user displays the context menu (i.e.,
before any menu item is chosen). The events fire in the sequence beforecut, beforecopy,
and beforepaste. Moreover, with the context menu approach, the three-event sequence
fires twice.

Note that in Safari 1.3/2, you must pass onbeforecopy (rather than beforecopy) to
addEventListener() to bind the event.

Typical Targets Rendered elements except form controls.

beforecut IE5(Win) NNn/a Mozn/a Saf1.3/2 Opn/a DOMn/a
Bubbles: Yes; Cancelable: Yes

Fires just before a user-initiated Cut command (via the Edit menu, a keyboard shortcut, or
a context menu) completes the task of removing the content from its current location and
moving the selected content to the system clipboard (assuming the browser is in edit mode

Alphabetical Event Reference | 905

m
<
)
3
-
=
)
-
m
=
m
3
~
™

for body content). At this point in the cut sequence, a function invoked by this event
handler can perform additional or substitute processing for the normal system cut action.
For example, additional information from the element, such as effective style information
of the element containing selected text, can be preserved in the IE clipboardData object (see
Chapter 2) for later processing with the help of the beforepaste event handler. Canceling
the beforecut event does not prevent user cutting of a selection.

See beforecopy for additional browser-specific notes.

Typical Targets All rendered elements.

beforedeactivate IE5.5 NNn/a Mozn/a Safn/a Opn/a DOMn/a

Bubbles: Yes; Cancelable: Yes

Fires just before an object is about to yield activation to another object because the user
clicked on another element, tabbed to another element, or because a script invoked the
setActive() or focus() method of another element. If an element has focus and is the
active element, the following event sequence fires en route to losing focus:
beforedeactivate, deactivate, and blur. Because beforedeactivate is cancelable (but
deactivate is not), cancel this event to prevent an element from deactivating or losing
focus—provided you have a good reason to do this other than annoying your visitors.

Typical Targets All rendered elements, plus the document and window objects.

beforeeditfocus IE5(Win) NNn/a Mozn/a Safn/a Opn/a DOMn/a
Bubbles: Yes; Cancelable: Yes

Fires just before an editable element receives official focus by a user clicking or tabbing to
the element. Editable elements include text-oriented form controls and body elements set
to be editable (see the IE 5.5 contentEditable property of all elements in Chapter 2). A
function invoked from this event handler can perform additional scripted actions, such as
setting the color of the element text, before the user begins editing the content.

Typical Targets Text form controls; rendered elements in edit mode (IE 5.5 or later);
content governed by the DHTML Editing ActiveX control (see http://
msdn.microsoft.com/workshop/browser/mshtml/).

beforepaste IES(Win) NNn/a Mozn/a Saf 1.3/2 Opn/a DOMn/a
Bubbles: Yes; Cancelable: Yes

Fires just before a user-initiated Paste command (via the Edit menu, a keyboard shortcut, or a
context menu) completes the task of pasting the content from the system clipboard to the
current selection. If you are trying to paste custom information from the clipboardbata object
(saved there in an beforecopy, copy, beforecut, or cut event handler), you need to have the
beforepaste and paste event handler functions working together. Set event.returnValue to

906 | Chapter3: EventReference

beforeupdate

false in the beforepaste event handler so that the Paste item in the Edit (and context) menu
is activated, even for a noneditable paste target. When the user selects the Paste menu choice,
your paste event handler retrieves information from the clipboardbata object and perhaps
modifies the selected element’s HTML content:

function handleBeforePaste() {
event.returnValue = false;
}

function handlePaste() {
if (event.srcElement.className == "OK2Paste") {
event.srcElement.innerText = clipboardData.getData("Text");
}

}

In the above paste operation, the system clipboard never plays a role because your scripts
handle the entire data transfer—all without having to go into edit mode.

See beforecopy for additional browser-specific notes.

Typical Targets All rendered elements and the document object.

beforeprint

See afterprint.

beforeunload IE4(Win)/5(Ma)) NNn/a Moz 1.7 Saf1.3/2 Opn/a DOMn/a
Bubbles: No; Cancelable: Yes

Fires just before the current document begins to unload due to impending navigation to a
new page, form submission, or window closure. This event fires before the unload event,
and gives your scripts and users a chance to cancel the unload action. Some of this activity
is automatic to prevent nefarious scripts from trapping users on a page.

In the beforeunload event handler, assign a string to the event.returnvalue property to
force IE and Mozilla 1.8 or later to display a dialog box that lets the user choose whether
the page should stay where it is, or whether the navigation or window closure action that
the user requested continues as expected. The string assigned to the event property
becomes part of the dialog box message (other text in the message is hard-wired by the
browser and may not be removed or modified). The resulting action is controlled by the
user’s button choice in the dialog box.

Typical Targets The body and frameset elements, plus the window object.

beforeupdate IE4(Win) NNn/a Mozn/a Safn/a Opn/a DOMn/a
Bubbles: Yes; Cancelable: Yes

Fires just prior to sending data to a writable data source object (through the IE data
binding mechanism). You can perform data validation and cancel the update.

Alphabetical Event Reference | 907

m
<
)
=
-
=
)
-
m
-
)
3
~
)

Typical Targets Elements that accept data input and support data binding.

blur IE3 NN2 Mozall Safall Opall DOM2
Bubbles: No; Cancelable: No

Fires after the current element loses focus (due to some other element receiving focus) or
invoking the blur() method of the current element. The blur event fires before the focus
event in the other element.

Avoid using the blur event in text input fields to trigger form validation, especially if the
validation routine displays an alert dialog box upon discovering an error. Interaction
among the blur and focus events, along with the display and hiding of an alert dialog box
can put you into an infinite loop. Use change instead.

Although the blur event has been supported for form controls and window objects since the
early days of scriptable browsers, modern browsers can fire the event on virtually any other
rendered element, provided the tabindex attribute is set for the element. Note that IE for
Windows is known to omit firing the blur event on window objects.

Typical Targets For all browsers, input (of type text and password), textarea, select,
and window objects; for IE 5 or later and W3C DOM browsers, add any
rendered element for which the tabindex attribute is assigned a value.

bounce IE4 NNn/a Mozn/a Safn/a Opn/a DOMn/a
Bubbles: No; Cancelable: Yes

Fires each time the text in a marquee element, whose behavior is set to alternate, touches a
boundary and changes direction.

Typical Targets The marquee element.

cellchange IE5Win) NNn/a Mozn/a Safn/a Opn/a DOMn/a
Bubbles: Yes; Cancelable: No

Fires on the element hosting a data binding data source object (usually the object element)
each time data in the remote database changes its value.

Typical Targets The object and applet elements.

change IE3 NN2 Mozall Safall Opall DOM2
Bubbles: No (IE); Yes (Others); Cancelable: Yes (IE); No (Others)

Fires when a text-oriented form control or select element loses focus and its content or
chosen item is different from what it was when the element most recently gained focus. Use
this event in text-type input and textarea elements to validate an entry for that one field.

908 | Chapter3: EventReference

contextmenu

But also include form-wide validation with the form element’s submit event handler. This
event fires before the blur event.

Typical Targets Text-type input, textarea, and select elements.

click IE3 NN2 Mozall Safall Opall DOM2
Bubbles: Yes; Cancelable: Yes

Fires after the user effects a mouse click or equivalent action. Click equivalents occur natu-
rally on focusable elements (buttons and links for most browsers) by pressing the Enter key
(and frequently the spacebar) when the item has focus. In modern browsers that support
the accesskey attribute, typing the access key combination also triggers a click equivalent.

For mouse click actions, the click event fires only if the mouse button is pressed and
released with the pointer atop the same element. In that case, the primary mouse events fire
in this order: mousedown, mouseup, and click.

An event object created from a mouse event has numerous properties filled with details
such as coordinates of the click and whether any modifier keys were held down during the
event. Information about the button used is more reliably accessed through the mousedown
or mouseup event. The event handler function can inspect these properties as needed.

Although the click event has been supported for button-oriented form controls and link
objects since the early days of scriptable browsers, modern browsers can fire the event on
virtually any other rendered element. Note that in Mozilla versions prior to 1.4 and Safari
prior to 1.3, mouse events can fire on child text nodes of container-type elements, meaning
that the event object’s target property references the node, rather than the element. See
Online Section VI for details about the impact of this behavior and cross-browser solutions.

Typical Targets For all browsers, input (of type button, radio, checkbox, reset, and
submit), a, and area objects; Version 4 and later support the event for the
document and window objects; for IE 4 or later and most W3C DOM
browsers (not Opera 9), add any rendered element, as well as text nodes
for Mozilla prior to version 1.4.

contextmenu IE5(Win) NNn/a Mozall Safall Opn/a DOMn/a
Bubbles: Yes; Cancelable: Yes

Fires after the user clicks the right mouse button (or the button designated the secondary
mouse button in the mouse control panel). This mouse button displays the context menu
for the item beneath the pointer. For Moxzilla prior to 1.4 and Safari prior to 1.3, the event
target could be a text node. For all other supporting browsers and versions, the target (or
IE event.sourceElement) is the containing element. To block the display of the context
menu (and perhaps display a custom one of your own design via DHTML), set event.
returnValue to false in the contextmenu event handler. While hiding the context menu may
make it more difficult for users to view the source of a page or save an image (assuming you
have already opened a document in a window bereft of the menubar), it is not a foolproof

Alphabetical Event Reference | 909

m
<
™
S
=
=
™
-
m
=
)
=
~
™

way to guard against determined users capturing your page’s content. Any scripted solu-
tion fails the instant the user disables scripting.

Typical Targets All rendered elements and the document object.

controlselect IE5.5 NNn/a Mozn/a Safn/a Opn/a DOMn/a
Bubbles: Yes; Cancelable: Yes

Fires when the user selects an editable element (not its content) while the page is in edit
mode. See move for a demonstration of this event.

Typical Targets All rendered elements and the document object.

copy IE5(Win) NNn/a Mozn/a Saf1.3/2 Opn/a DOMn/a
Bubbles: Yes; Cancelable: Yes

Fires after the user initiates the Copy command (via the Edit menu, a keyboard shortcut, or
a context menu) to place a copy of the selected content into the system clipboard. An event
handler function for this event can supplement the copy action by placing additional data
of your choice into the clipboardData object (which the paste event handler can read and
handle as needed).

To give users access to a Copy menu command for an otherwise uneditable element, set
event.returnValue to false in the beforecopy event handler for the same object as the
copy event handler. On the other hand, to prevent user copying of body content, set
event.returnValue to false for the copy event handler. Just don’t regard this tactic as a
foolproof way to prevent users from copying your prized content.

Note that in Safari 1.3/2, you must pass oncopy (rather than copy) to addEventListener() to
bind the event.

Typical Targets Rendered elements except form controls.

cut IE5(Win) NNn/a Mozn/a Saf 1.3/2 Opn/a DOMn/a
Bubbles: Yes; Cancelable: Yes

Fires after the user initiates the Cut command (via the Edit menu, a keyboard shortcut, or a
context menu) to place a copy of the selected content into the system clipboard. To cut
body content, the containing element must be in edit mode (see the shared contendEditable
property in Chapter 2). An event handler function for this event can supplement the cut
action by placing additional data of your choice into the clipboardData object (which the
paste event handler can read and handle as needed).

To give users access to a Cut menu command for an otherwise uneditable element, set
event.returnValue to false in the beforecut event handler for the same object as the cut
event handler. On the other hand, to prevent user cutting of body or form control content,
set event.returnValue to false for the cut event handler.

910 | Chapter3: EventReference

