J.H. van Lint

Introduction to
Coding Theory

Third Edition

iDL FIE SBShR

Springer-Verlag
2 -0 ¥ & i )




J.H.van Lint

Introduction to
Coding Theory

Third Revised and Expanded Edition

3ZF
@) Springer



$# £ Introduction to Coding Theory 3rd ed.
£  #&: JH.anLint

doEF A RERER BIK

HOAE # HAEBHRATERAR

ED Bl ®: JbstHtEEnR

2 {7 HREPHRAEIRAA JLRPRKE 1375 100010)
FoOK: 24 Bl %k: 105
HARER: 20034 1 A

B 8. 7-5062-0116-X

AT BF:01-2002-5624

' 29.003‘1:

- REPHAEL AL R F S 348 Springer-Ver | ag B E R E
KB REEN & 1T



J.H.van Lint

Eindhoven University of Technology
Department of Mathematics

Den Dolech 2, P.O. Box 513

5600 MB Eindhoven

The Netherlands

Editorial Board

S. Axler F. W. Gehring K. A. Ribet

Mathematics Department  Mathematics Department  Mathematics Department
San Francisco University of Michigan  University of California
State University Ann Arbor, MI 48109 at Berkeley

San Francisco, CA 94132 USA Berkeley, CA 94720-3840
USA USA

Library of Congress Cataloging-in-Publication Data

Lint, Jacobus Hendricus van, 1932-
Introduction to coding theory / J.H. van Lint. -~ 3rd rev. and
expanded ed.
p. cm, - (Graduate texts in mathematics, 0072-5285 ; 86)
Includes bibliographicat references and index.
ISBN 3540641335 (hardcover : alk. paper)
1. Coding theory. 1. Title. Il. Series.
QA268 .L57 1998
003'.54--dc21
98-48080
(ol

Malhematics Subject Classification (1991): 94-01, 94B, 11T71

ISSN 0072-5285
ISBN 3-540-64133-5 Springer-Verlag Berlin Heidelberg New York
ISBN 3-540-54894-7 2nd Edition Springer-Verlag Berlin Heidelberg New York

This reprint has been authorized by Springer-Verlag (Berlin/Heidelberg/New York) for sale in
the People’s Republic of China only and not for export therefrom.
Reprinted in China by Beijing World Publishing Corporation, 2003

© Springer-Verlag Berlin Heidelberg 1982, 1992, 1999

Typesetting: Asco Trade Typesetting Ltd., Hong Kong
SPIN 10668931 46/3143 - 54 32 ) 0 - Printed on acid-free paper



Preface to the Third Edition

It is gratifying that this textbook is still sufficiently popular to warrant a third
edition. I have used the opportunity to improve and enlarge the book.

When the second edition was prepared, only two pages on algebraic geometry
codes were added. These have now been removed and replaced by a relatively
long chapter on this subject. Although it is still only an introduction, the chapter
requires more mathematical background of the reader than the remainder of this
book.

One of the very interesting recent developments concerns binary codes defined
by using codes over the alphabet Z,. There is so much interest in this area that
a chapter on the essentials was added. Knowledge of this chapter will allow the
reader to study recent literature on Z,-codes.

Furthermore, some material has been added that appeared in my Springer Lec-
ture Notes 201, but was not included in earlier editions of this book, e. g. Generalized
Reed-Solomon Codes and Generalized Reed-Muller Codes. In Chapter 2, a section
on “Coding Gain” ( the engineer’s justification for using error-correcting codes)
was added.

For the author, preparing this third edition was a most welcome return to
mathematics after seven years of administration. For valuable discussions on
the new material, I thank C.P.J. M. Baggen, I. M. Duursma, H.D.L. Hollmann,
H.C. A.vanTilborg, and R. M. Wilson. A special word of thanks toR. A. Pellikaan
for his assistance with Chapter 10.

Eindhoven J.H. vaN LiNnT
November 1998



Preface to the Second Edition

The first edition of this book was conceived in 1981 as an alternative to
outdated, oversized, or overly specialized textbooks in this area of discrete
mathematics—a ficld that is still growing in importance as the need for
mathematicians and computer scientists in industry continues to grow.

The body of the book consists of two parts: a rigorous, mathematically
oriented first course in coding theory followed by introductions to special
topics. The second edition has been largely expanded and revised. The main
editions in the second edition are:

(1) along section on the binary Golay code;

(2) a section on Kerdock codes;

(3) a treatment of the Van Lint-Wilson bound for the minimum distance of
cyclic codes;

{4) a section on binary cyclic codes of even length;

(5) an introduction to algebraic geometry codes.

Eindhoven J.H. vaN LINT
November 1991



Preface to the First Edition

Coding theory is still 2 young subject. One can safely say that it was born in
1948. Tt is not surprising that it has not yet become a fixed topic in the
curriculum of most universities. On the other hand, it is obvious that discrete
mathematics is rapidly growing in importance. The growing need for mathe-
maticians and computer scientists in industry will lead to an increase in
courses offered in the area of discrete mathematics. One of the most suitable
and fascinating is, indeed, coding theory. So, it is not surprising that one more
book on this subject now appears. However, a little more Jjustification and a
little more history of the book are necessary. At a meeting on coding theory
in 1979 it was remarked that there was no book available that could be used
for an introductory course on coding theory (mainly for mathematicians but
also for students in engineering or computer science). The best known text-
books were either too old, too big, too technical, too much for specialists, etc.
The final remark was that my Springer Lecture Notes (#201) were slightly
obsolete and out of print. Without realizing what I was getting into I
announced that the statement was not true and proved this by showing
several participants the book Inleiding in de Coderingstheorie, a little book
based on the syllabus of a course given at the Mathematical Centre in
Amsterdam in 1975 (M.C. Syllabus 31). The course, which was a great success,
was given by M.R. Best, A.E. Brouwer, P. van Emde Boas, T.M.V. Janssen,
H.W. Lenstra Jr, A. Schrijver, H.C.A. van Tilborg and myself. Since then the
book has been used for a number of years at the Technological Universities
of Delft and Eindhoven.

The comments above explain why it seemed reasonable (to me) to translate
the Dutch book into English. In the name of Springer-Verlag I thank the
Mathematical Centre in Amsterdam for permission to do so. Of course it
turned out to be more than a translation. Much was rewritten or expanded,



X Preface to the First Edition

problems were changed and solutions were added, and a new chapter and
several new proofs were included. Nevertheless the M.C. Syllabus (and the
Springer Lecture Notes 201) are the basis of this book.

The book consists of three parts. Chapter 1 contains the prerequisite
mathematical knowledge. It is written in the style of 2 memory-refresher. The
reader who discovers topics that he does not know will get some idea about
them but it is recommended that he also looks at standard textbooks on those
topics. Chapters 2 to 6 provide an introductory course in coding theory.
Finally, Chapters 7 to 11 are introductions to special topics and can be used
as supplementary reading or as a preparation for studying the literature.

Despite the youth of the subject, which is demonstrated by the fact that the
papers mentioned in the references have 1974 as the average publication year,
I have not considered it necessary to give credit to every author of the
theorems, lemmas, etc. Some have simply become standard knowledge.

It seems appropriate to mention a number of textbooks that I use regularly
and that I would like to recommend to the student who would like to learn
more than this introduction can offer. First of all F.J. MacWilliams and
N.J.A. Sloane, The Theory of Error-Correcting Codes (reference [46]), which
contains a much more extensive treatment of most of what is in this book
and has 1500 references! For the more technicaily oriented student with an
interest in decoding, complexity questions, etc. E.R. Berlekamp’s Algebraic
Coding Theory (reference [2]) is a must. For a very well-written mixture of
information theory and coding theory I recommend: R.J. McEliece, The
Theory of Information and Coding (reference [51]). In the present book very
little attention is paid to the relation between coding theory and combina-
torial mathematics. For this the reader should consult P.J. Cameron and
J.H. van Lint, Designs, Graphs, Codes and their Links (reference [11]).

I sincerely hope that the time spent writing this book (instead of doing
research) will be considered well invested.

Eindhoven J.H. vaAN LINT
July 1981

Second edition comments: Apparently the hope expressed in the final line of
the preface of the first edition came true: a second edition has become neces-
sary. Several misprints have been corrected and also some errors. In a few
places some extra material has been added.
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CHAPTER 1

Mathematical Background

In order to be able to read this book a fairly thorough mathematical back-
ground is necessary. In different chapters many different areas of mathematics
play a role. The most important one is certainly algebra but the reader must
also know some facts from elementary number theory, probability theory and
a number of concepts from combinatorial theory such as designs and geo-
metries. In the following sections we shall give a brief survey of the prerequi-
site knowledge. Usually proofs will be omitted. For these we refer to standard
textbooks. In some of the chapters we need a large number of facts concerning
a not too well-known class of orthogonal polynomials, called Krawtchouk
polynomials. These properties are treated in Section 1.2. The notations that
we use are fairly standard. We mention a few that may not be generally
known. If C is a finite set we denote the number of elements of C by |C|. If the
expression B is the definition of concept A4 then we write A := B. We use “iff”
for “if and only if”. An identity matrix is denoted by I and the matrix with
all entries equal to one is J. Similarly we abbreviate the vector with all
coordinates O (resp. 1) by 0 (resp. 1). Instead of using [x] we write [X] :=
max{n e Z|n < x} and we use the symbol [x] for rounding upwards.

§1.1. Algebra

We need only very little from elementary number theory. We assume known
that in N every number can be written in exactly one way as a product of
prime numbers (if we ignore the order of the factors). If a divides b, then we
write a|b. If p is a prime number and p'|a but p**! | a, then we write p"|a. If



2 1. Mathematical Background
ke N, k > 1, then a representation of n in the base k is a representation

i=0

0 <n; <kfor0<i< | Thelargest integer n such that nja and n|b is called
the greatest common divisor of a and b and denoted by g.c.d.(a, b) or simply
(a, b). If m|(a — b) we write a = b (mod m).

(1.1.1) Theorem. If
e(n):=|{meN|l <m<n, (mn) =1},
then

(i) @) =n[],.(1 —1/p),
(i) Yy 0d) = n.

The function ¢ is called the Euler indicator.
(1.1.2) Theorem. If (a, m) = | then a®™ = 1 (mod m)
Theorem 1.1.2 is called the Euler—Fermat theorem.

(1.1.3) Definition. The Mobius function u is defined by

1, ifn=1,
p(n):= < (=1), ifnis the product of k distinct prime factors,
0, otherwise.

(1.1.4) Theorem. If f and g are functions defined on N such that
g(n) = ‘2; /),

then
Sy =3 pid)g (3)
din

Theorem 1.1.4 is known as the Mobius inversion formula.

Algebraic Structures

We assume that the reader is familiar with the basic ideas and theorems of
linear algebra although we do refresh his memory below. We shall first give
a sequence of definitions of algebraic structures with which the reader must
be familiar in order to appreciate algebraic coding theory.
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(1.1.5) Definition. A group (G, )is a set G on which a product operation has
been defined satisfying

(l) Vue GVbeG[ab € G]v
(") VIGGVbs GvcsG[(ab)C = a(bc)]v
(i) 3.cGVacglae = ea =a],
(the element e is unique),
(iv) VaegIpeglab = ba =],
(b is called the inverse of a and also denoted by a™').

If furthermore
(V) Vae Gvbe G [ab = ba]v

then the group is called abelian or commutative.

If (G, )is a group and H < G such that (H, )is also a group, then (H, )
is called a subgroup of (G, ). Usually we write G instead of (G, ). The number
of elements of a finite group is called the order of the group. If (G, )isa group
and a € G, then the smallest positive integer n such that a” = e (if such an n
exists) is called the order of a. In this case the elements ¢, a, a2, ..., a""! form
a so-called cyclic subgroup with a as generator. If (G, ) is abelian and (H, )
is a subgroup then the sets aH := {ah|h € H} are called cosets of H. Since two
cosets are obviously disjoint or identical, the cosets form a partition of G. An
element chosen from a coset is called a representative of the coset. It is not
difficult to show that the cosets again form a group if we define multiplication
of cosets by (aH)(bH) := abH. This group is called the factor group and
indicated by G/H. As a consequence note that if a € G, then the order of a
divides the order of G (also if G is not abelian).

A fundamental theorem of group theory states that a finite abelian group is a
direct sum of cyclic groups.

(1.1.6) Definition. A set R with two operations, usually called addition and
multiplication, denoted by (R, +, ), is called a ring if

(i) (R, +) is an abelian group,
(h) Vnekvbs thsk[(ab)c = a(bc)],
(iii) Ve xVoerVeerlald + ) =ab + ac A (@ + b)c = ac + bc].

The identity element of (R, +) is usually denoted by 0.
If the additional property

(IV) Vaq vaek[ab = ba]

holds, then the ring is called commutative.

The integers Z are the best known example of a ring.
If (R, +, ) is a commutative ring, a nonzero element @ € R is called a zero
divisor if there exists a nonzero element b € R such that ab = 0. If a nontrivial
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ring has no zero divisors, it is called an integral domain_. Ifl the same way'that Z
is extended to Q, an integral domain can be embedded in its field of fractions or

quotient field.

(1.1.7) Definition. If (R, +, )isaringand® # S < R, then S is called an ideal
if

(l) V-ssvbeS[a —-be S]v

(ii) VoesVpex(ab €S A bae S].

It is clear that if S is an ideal in R, then (S, +, )isa subring, but require-
ment (ii) says more than that.

(1.1.8) Definition. A field is a ring (R, +, ) for which (R\{0}, )is an abelian
group.

(1.1.9) -Theorem. Every finite ring R with at least two elements such that

' Vnskvbnk[ab=0=(a=0\/ b=0)]
is a field.

(1.1.10) Definition. Let (¥, +) be an abelian group, F a field and let a multipli-
cation F x V — V be defined satisfying

(l) Vley[]a = I],
vcl fvﬁc Fvne V[a(ﬂ‘) = (aB)a],

(il) Vae Fvls vaeV[a(a + b) =aa + ab]a
vll dec rvnv[(a + B)ﬂ =ga + B’]

Then the triple (V, +, F) is called a vector space over the field F. The identity
element of (V, +) is denoted by 0.

We assume the reader to be familiar with the vector space R" consisting of
all n-tuples (a,, a,, ..., a,) with the obvious rules for addition and multiplica-
tion. We remind him of the fact that a k-dimensional subspace C of this
vector space is a vector space with a basis consisting of vectors a, :=
@1,815,...,a,,), 8, :=(a;,,0;3,...,a,,), ..., a, = (ay,, a3, ..., Gy,), where
the word basis means that every a € C can be written in a unique way as
®; 8, + a8, + - + a,a,. The reader should also be familiar with the process
of going from one basis of C to another by taking combinations of basis
vectors, etc. We shall usually write vectors as row vectors as we did above. The
inner product {a, b) of two vectors a and b is defined by

<a, b> = a, bl + azbz + -+ a,,b,.

The clements of a basis are called linearly independent. In other words this
means that a linear combination of these vectors is 0 iff all the coeficients are
0.1fa,,...,a, are k linearly independent vectors, i.e. a basis of a k-dimensional
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subspace C, then the system of equations {a, y> =0 (i= I, 2 k) has as
its solution all the vectors in a subspace of dimension n — k which we denote
by C*. So,

Ct:= {y € R,.ivxsc[(xv y= 0]}

These ideas play a fundamental role later on, where R is replaced by a finite
field F. The theory reviewed above goes through in that case.

(1.1.11) Definition. Let (V, +) be a vector space over F and let a multiplica-
tion V x ¥V — V be defined that satisfies

() (V, +, )isaring,
(i) Vae Fvns VVBQV[(”)b = ﬂ(db)]

Then we say that the system is an algebra over F.

Suppose we have a finite group (G, -) and we consider the elements of G as
basis vectors for a vector space (¥, +) over a field F. Then the elements of V
are represented by linear combinations a,g, + a,9, + *** + a,g,, Where

weF, geG (1<i<n=|G))

We can define a multiplication = for these vectors in the obvious way, namely

(Z‘: aay.-) . (ZI: ﬁ;g,-) =2 Z}f (@B)(g:" 9;),

which can be written as }, %,g;, where , is the sum of the elements «,f; over
all pairs (i, j) such that g;-g; = g,. This yields an algebra which is called the
group algebra of G over F and denoted by FG.

ExaMPLEs. Let us consider a number of examples of the concepts defined
above.

If A:= {a,, a,, ..., a,} is a finite set, we can consider all one-to-one map-
pings of S onto S. These are called permutations. If ¢, and o, are permutations
we define 0,0, by (6, 0,)(a) := g,(0,(a)) for all a € A. It is easy to see that the
set S, of all permutations of 4 with this multiplication is a group, known as
the symmetric group of degree n. In this book we shall often be interested in
special permutation groups. These are subgroups of S,. We give one example.
. Let C be a k-dimensional subspace of R". Consider all permutations ¢ of the
integers 1,2, ..., nsuch that for every vector ¢ = (c,, ¢3, ..., ¢,) € C the vector
(Cat1) Cot2)s - -+ Corm) 1S also in C. These clearly form a subgroup of S,. Of
course C will often be such that this subgroup of S consists of the identity only
but there are more interesting examples! Another example of a permutation
group which will turn up later is the affine permutation group defined as
follows. Let F be a (finite) field. The mapping foomWhenueF, velF,u#0,is
defined on F by f, ,(x) := ux + v for all x e F. These mappings are permuta-
tions of F and clearly they form a group under composition of functions.




