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Nomenclature

*Notations marked with asterisk (*) can have several different meanings. In general,
their meaning will be clear from the context in which they are used.

Reference
Notation SI unit Name section (volume)
[Equation]
A B, C, .. Arbitrary constants
Ay Aqr Variable Principal transfer coefficients 2.1.2.2 [2.18]
c. Cy kg/kg Concentration, mass fraction 1.2.2.3(2)
C JK ' 'm™ Thermal capacity per unit volume| 1.2.3 (2), 1.4.3
F m - Inverse of permeability tensor 1.5.4.3(2)
Cor. Cyx | Variable Coupling coefficients 2.1.2.2
d m Pore diameter
d. m C.haracterlstlc (critical) pore 212202
diameter
L 1.42.2 (2),
d, m Hydraulic diameter 13.6.2, [1.35]
Dy, Dy, o = . 1.2.2.1, (2),
_ s Dlifusnon coefficients 1222.[1.7]2)
Des, Dy ortensors 1.4.3.2,[1.26] (2)
2 T 2.2.24,[2.26] (2),
Dy m- s Hydric diffusivity 223 (2)
* S| Thermal diffusivity (pure, "9
Dy, Dy | m’s spromE) 2.12.5,[2.22]
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—=disp 2 Dispersion tensor of the -
D m° s component & 1.4.3.4,[1.27]1(2)
3 g Strain rate tensor 1.5.2.1 (2)
E M Thickness of the wall layer 1.2.1.1,[1.15]
E, o s Effusion coefficient of the 2325, [2.48] (2)
component &
Vi - Resistance factor to diffusion 2:.1.1.5, [2.11]
Zi &4 mole m™~ s~ | Density of molar flux* 1.2.2.1,[1.3](2)
g ms? Graviational field*
g Variable “Conductance™ 1.5.7.2 (2)
h Variable Exchange coefficient 2.2.1.3,[2.14] (2)
hp ms' Mass exchange coefticient 1.2.1.1,[1.15]
hy Jm?s' K" | Heatexchange coefficient 1.2.1.4
Jy Xm?s! Flux density of the value X 14.12(2)
L Mass flux density, of the
JoJy. Jo | kem?s' | component £, }‘;‘;% (izl)‘ctx] )
of the a-phase T A
= ke m2s! Diffusive mass flux density 1.2.2.2 (2),
Tk & of the component k 14.1.3,[1.21](2)
k. ; m’ Intrinsic permeability (tensor) 1.4.2.1,[1.22] (2)
K; m’Pa's’ Hydraulic conductivity 2.2.22,[2.19](2)
]& ms’ Hydraulic conductivity 22.2.2,[2.211(2)
K m?Pa' s “Hydric conductivity” 22.2.3,[2.23] (2)
2.2.3,[2.30] (2)
b M Molecular mean free path 21212
L, Tkg'! Heat of vaporization 2432(1),12.14
L., Jkg'! Heat of sublimation 1.2.2.3 and 1.4.4.1
L, Tkeg'! Heat of liquefaction 2.3.1(1)
M kg mole ' Molar mass
N, N, mole kg" Moles per unit mass 1.5.2.3 (2)
n o, —_— m’3 Molar concentration of a gas, 24.1.1(1).12.2.1 (2)
of a component
n - Normal unit vector
Nu - Nusselt number 1.4.4.2,[1.20]
7 Pa Pressure




Nomenclature

ix

P. Pa Capillary pressure 123, [1.1](1)
- . 1.4.3.4,[1.28] (2)
Pe - Péclet number 1352, [1.50]
0 m's’ Volume flow rate
- 2 Density of conductive thermal i
q. ¢ Jm-~s flux 1.2.3,[1.9] (2)
L. Apparent density of thermal flux | 2.1.1.3, [2.8]
q.49 Jm?s! . .
Apparent density of thermal flux
(freezing) 2.2.14,[2.34]
R Jmole ' K" | Ideal gas constant
R. M Interfacial curvature radius 1.23,[1.1](1)
) 1.2.1.3 (2),
Re - Reynolds number 1.4.4.2, [1.60]
S ms '? Sorptivity* 1.1.1.1,[1.4]
8 JK kg Specific entropy* 1.5.2.1 (2), footnote 32
S m’ Section*
Sy Xm's! Volume source for the value X | 1.4.1.2(2)
. TK Volume*concentranon of 1522(2)
entropy
1 S Time, date
- K Kelvin temperature, Celsius
LT temperature
u Tkg'! Specific internal energy 1.5.2.1 (2), footnote 32
@ I Volumi concentration of internal 1.4.1.2 (2). footnote 30
energy
u ms Boltzmann’s variable* 1.1.1.1 and 1.4.1.1
V ms’ Flow velocity, Darcian velocity 1.2.1, 1.4.1.3 (2)
V, ms"' Velocity of the fluid phase 1.5.3.1, [1.57] (2)
v, m s Carte_s1an coordinate of flow 15.13 (2)
velocity
v ms ' Average molecular velocity 2.3.2.1(2),[2.41]
X, V.2, Xy m Cartesian coordinates™®
X, X; - Mole fraction® 2.4.4.1(1),23.2.7(2)
v X Volume concentration of the 14.12(2)
value X
z m Descending vertical coordinate
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Greek Symbols
o K Coefficient of thermal variation*
Coefficient of thermal variation 1214
a,, B K of the density, (of the pressure) off | """
the saturated vapor T
2 Diffusivity (particularly y
o m-s thermal)* 1.2.3(2), 1.4.1
ﬂD - Knudsen factor 2.1.2.2(2)
- Klinkenberg factor 2.1.23 (2
B g )
By Variable Capacity coefficient 2.1.2.2,[2.15]
Ko Yor- (:,, - EMT coefficients 1.5.7.1 (2),2.3.4.1 (2)
3’_ 5,.1. - Unit tensor, Kronecker symbol
£ - Porosity 1.2.4.2 (1)
. 1.3.2.3,[1.12] (2)
Ex - Volume fraction of the phase o 1412.[1.17] )
@ - Vapor saturation level 1.3.2, [L.4] (1),
- or relative humidity 2.1.3.1(2)
Py P, & 2.3.1.1,[2.38]
r Variable Capacity 2.2.1.2,[2.13] (2)
I
h Pa”! Capillary capacity 222.1,[2.171(2)
e m Capillary capacity 2,122
Fw - Hygroscopic capacity 2.2.2.4,[2.27](2)
Capacity in relation to the = =
% Tk ) component & 22.6:1,[2.3712)
Lg/r K Cryogenic capacity 2.2.1.3,[2.30]
I’ JmiK /T\';;Z’r’:['nc&'ﬁg _—— 2.12.1,[2.14]
* -3 -1 29 )
hpe Jm K (freesing) 2.2.1.4,[2.34]
n(d) - Cumulative pore size distribution| 3.1.1.2, 1.3.6.1
K, K, - Relative permeabilities 2.1.1.3,[2.2] (2)
Rl Apparent thermal conductvity | 12311912
A Jm's'K! - 2.1.1.3,[2.9]. [2.10]
. Apparent thermal conductivity 2214, [2.35]
A (freezing) el el
Y7 Pa:s Dynamic viscosity 1.2.1.1 (2)
0 Chemical potential of the 2.4.4.1(1), [2.35]
Hi J mole component k 1.5.2.3(2)




Nomenclature

Xi

and superscripts

e - Liquid volume fraction, volume 1242 (1)
'9 saturation 2'2'1 'l'
4 - volume fraction of ice (fieezing) | =77
] ; P 3.1.2.2 (1)
6" 6, - Residual saturations 211 2)
P kg m ‘ Density. mass concentration
£, kgm” Density of ice (freczing)
| Interfacial tension* L2311} L1413
i G (particularly capillary) 2.1.2(1),
P y captary 2.1.5.1 (1)
. Transport capacity, 2 9 5
Variable “conductivity™ 1.5.7.1 (2),2.3.4.1 (2)
v Xm ‘s Surface source of the value X 1.43.1
r. ; T, Pa Constraint, constraint tensor*® 1.2.1.1 (1)
= 1.4.3.2,[1.26] (2)
Ty Ty O - Coefficient, tortuosity tensor* 1.54.1.[1.68] (2)
1.3.6.2
2 m’ Volume
s, Variable Silent variable in an integration,
- & Th j Silent argument of a function
¥ Pa Capillary potential 1.2.3,[1.1] (1)
v m Capillary potential 2.1.2.2(2)
Yy Pa Cryogenic depression (freezing) | 2.3.1,[2.21](2)
- Thermal gradient factor relative 5 '
Su - to the phase o 2112, R
Subscripts

a Atmosphere, air

at Standard atmosphere
¢ Capillary

ef Effective

eff Effusion

S Fluid

bd Boundary

g Gas

ini Initial
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i, j.. Index of direction in Cartesian coordinate system
k.. Index of a component in a mix

l Liquid

m Mean

s, sat Saturated, at saturation™

s Solid*

5 Ice (freezing)*

sub Sublimation

v Vapor

Vs Saturated vapor

v Viscous

w, n Wetting, non-wetting*

o Index of a phase in composite medium or in porous medium
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Chapter 1

[sothermal Transport in
Porous Media: Applications

The applications presented in this chapter are principally concerned with the
isothermal transport in porous media of interstitial fluid. accompanied by the
transport of its vapor by diffusion or filtration. The laws governing this transport
have been explained in sections 2.2.2 and 2.2.3 in the classification proposed in
section 2.2 of Chapter 2 (Volume 2). Two categories can be distinguished, relatively
arbitrarily, depending on the importance of phase change in the process.

The processes dominated by the filtration of liquid have been categorized as
capillary transport (section 1.1). The transport of vapor which accompanies
capillary transport, whether by isobaric diffusion or filtration, plays a secondary, and
usually negligible, role. In particular, the condition at the boundary of the porous
body is presumed to be defined in terms of capillary potential controlled by the
liquid phase, or liquid flux.

Section 1.2 is principally concerned with drying and also, as a related concept,
with sorption. In these applications, phase change and transport in gas phase play an
essential role. In the environment of the porous body, the vapor pressure is
controlled, leading to the vaporization of the interstitial liquid at the boundary (or
condensation of the vapor). Phase change at the boundary or in the neighboring body
is likely to play an important role in the kinetics of the process. Thermal phenomena,
which are inevitably associated with vaporization, must be evaluated, so as to justify
or invalidate the approximation of quasi-isothermal transport.
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In practice, these two categories of process are only separated in certain
laboratory experiments that allow the control of boundary conditions, and in certain
industrial processes. In contrast, in natural environmental conditions, the transport of
water within soils under the influence of atmospheric stresses is essentially of a
“capillary” nature in rainy conditions. However, when no liquid water is added, at
least in the upper part of the soil, phase-change processes related to contact with the
atmosphere are dominant. In this context, where the surface is exposed to the effect
of the sun's rays and to the (somewhat periodic) variations of the ambient
temperature, approximation of quasi-isothermal transport is hard to justify. It
becomes necessary to take the effects of the thermal gradient on moisture transport
into account. In Chapter 2, we will discuss this subject.

In the same way, in industrial drying processes, vapor transport controls the
condition at the boundary and plays a dominant role in the superficial region of the
body. However, within the body, transport remains capillary in nature, except during
the final phase of the process.

Other processes of isothermal transport have been listed in the classification
discussed in Chapter 2 (Volume 2): filtration of a non-condensible gas, and diffusion
and dispersion in saturating liquid phase. They are more briefly addressed in sections
1.3 and 1.4, in the context of experimental processes and measurement methods.

1.1. Capillary transport
1.1.1. Isothermal transport without gravity

1.1.1.1. Imbibition or capillary drainage in a half-space

Here, we are concerned with isothermal transport (whether “capillary”™ or
otherwise) in a semi-infinite porous body delimited by a planar boundary, in an
initial state of uniform saturation defined by the liquid saturation 8,,. In the absence

ini*
of gravity, the most convenient constitutive equation for studying the transient
processes is formulation [2.26] (Volume 2) in @ with a unique spatial variable x,
where the domain is defined by x> 0.

00 26 9 26

—=div| Dy(O)VO | —=—| Dy(6)— 1.1
ar V| DOV 5 ax{ “’()a,\l 1]
%—? =div [DH(HWB]

The boundary condition at x =0 is Dirichletian in nature. This condition can be
expressed in terms of ambient capillary pressure or the level of ambient vapor



Isothermal Transport in Porous Media 3

saturation, but in both cases, its influence is seen by way of the saturation imposed
at the boundary 6, via the retention curve or the sorption isotherm. This condition

represents imbibition under constant capillary pressure, or sorption under constant
vapor pressure if 6, >86,. . and conversely, capillary drainage, drying or

desorption. We avoid the terms “infiltration” and “drainage”, which are used in
everyday language for gravitational processes.

1.1.1.1.1. Integral mass balance

For this unidimensional configuration, the density of local and instantaneous
volume' flux (or “velocity™ in m/s) V(r,x) can be expressed using a general

balance. The liquid layer e(f,x) (in m*/m?), which entered the region situated past

the abscissa x at the time ¢ (or in the case of drainage, was extracted from it), is
expressed by the area comprised between the instantaneous saturation profile and
the initial saturation level® (Figure 1.1(a)). The volume flow density is the temporal
derivative of e(Z,x):

= J )
e(t, x) = j [o(.&)-8,, Jaé p—zV(t,.\'):a—i [1.2]
; !

Another expression of the flux follows on from the transport law:

V= —= = =—Dy—
ox d@ ox I ox ox

1.1.1.1.2. Boltzmann solution

Although equation [1.1] is not linear, for this particular problem we may apply a
process using the linear diffusion equation, which consists of searching for a
solution as a function of the Boltzmann variable u (section 1.4.1.6). Equation [1.1]
then takes on the form of a differential equation with a single variable:

i[ gﬁ} B 00 with u = — according to [1.55]
du du 2 du J;

I Why not simply say Darcy’s velocity? Because this flux density can comprise, together with
Darcian velocity of the liquid, a term that is representative of the coupled vapor flux, which
may even dominate in the domain of the residual saturation.
2 In integral [1.2], and in general hereafter, the notations & 77 are used as arguments of
functions or as silent variables in the integrals. x, ¢, ... are reserved for space, time and
Boltzmann’s variable when they appear in integration limits.



4 Equilibrium and Transfer in Porous Media 3

and the solutions are sought in the form™:

0 = eini +(0¢1 —emr' )f(ll) f(O) = ] f(oo):O

imbibition

capillary

drainage .
l\
Hnl
0 X ¥ 0 u=x/t
a Instantaneous profile and liquid layer b Boltzmann profiles

Figure 1.1. Instantancous profile of saturation in imbibition and
capillary drainage or drving

The function f(u) is dependent on the law of diffusivity Dg,(8), but also on the
initial and boundary conditions (Figure 1.1(b)).

The representation of #(u) (Figure 1.1(b)) indicates the curve shape of all the
instantaneous profiles of the saturation 8(x) = B(u\ﬁ ) . These profiles are deformed

over time by affinity along the x axis of a factor proportional to w/; , and degenerate
stepwise to /=0 (see Figure 1.18).

With the same law of diffusivity D,(€) and the same saturation interval
12

ni a

(8,<86,

ini

6,. the curves are clearly different during imbibition (6, >6,,) and drying

). Indeed, according to [1.3], the slope of an instantaneous profile is

determined by:

3 This calculation may also be performed using the differential equation in ¥ or in ¢ as a
basis. We arrive at the same equation [1A.15] governing the variable ¥ or ¢ in place of 6,
with the same hydric diffusivity D,, which is a quotient of the coefficient of transport and of

the corresponding capacity.



