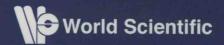

Editor-in-Chief
Guy Deutscher

World Scientific Series in Applications of


Superconductivity and Related Phenomena

OL =

Research,
Fabrication and
Applications of
Bi-2223 HTS Wires

Edited by: Kenichi Sato

Editor-in-Chief
Guy Deutscher
World Scientific Series

in Applications of Superconductivity and Related Phenomena

VOL 📹

Research, Fabrication and Applications of Bi-2223 HTS Wires

Edited by

Kenichi Sato

Sumitomo Electric Industries Ltd, Japan

Published by

World Scientific Publishing Co. Pte. Ltd.

5 Toh Tuck Link, Singapore 596224

USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE

British Library Cataloguing-in-Publication Data

A catalogue record for this book is available from the British Library.

World Scientific Series in Applications of Superconductivity and Related Phenomena — Vol. 1
RESEARCH, FABRICATION AND APPLICATIONS OF BI-2223 HTS WIRES

Copyright © 2016 by World Scientific Publishing Co. Pte. Ltd.

All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher.

For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher.

ISBN 978-981-4749-25-1

In-house Editor: Song Yu

Typeset by Stallion Press

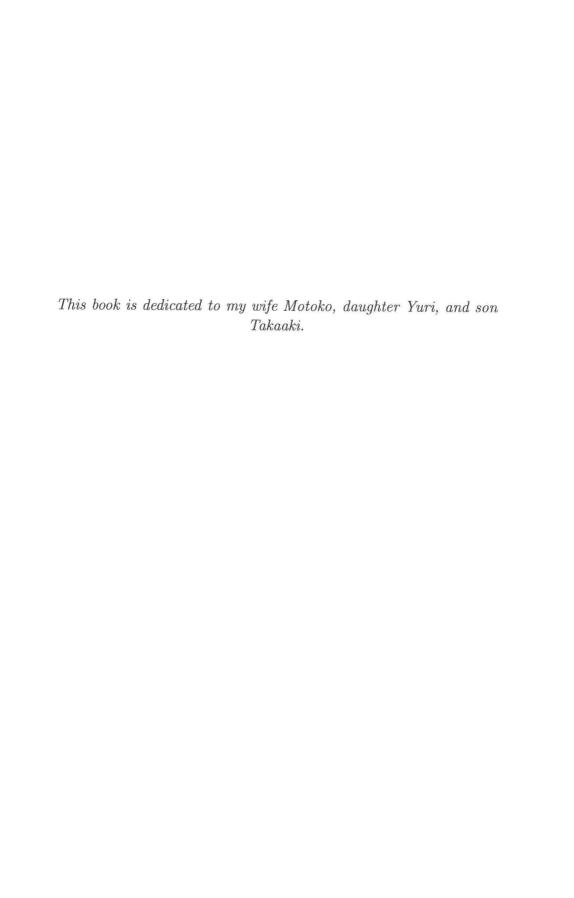
Email: enquiries@stallionpress.com

Printed in Singapore

Research,
Fabrication and
Applications of
Bi-2223 HTS Wires

World Scientific Series in Applications of Superconductivity and Related Phenomena

ISSN 2424-8533


Series Editor: Guy Deutscher (Tel-Aviv University, Israel)

Published

Vol. 1 Research, Fabrication and Applications of Bi-2223 HTS Wires edited by Kenichi Sato

Forthcoming

 ${\rm MgB_2}$ Superconducting Wires: Basics and Applications edited by René Flükiger

Preface

Prof. Guy Deutscher serves as scientific Editor-in-Chief of a new series of "Applications of Superconductivity". He wishes to acknowledge the help of the Executive Committee of the IEA Agreement on Superconductivity in preparation of this Series. This book is focusing on Bi-2223. Bi-Sr-Ca-Cu-O oxide superconducting material (BSCCO) was discovered on Christmas Eve, 24th December, 1987 by Dr. Hitoshi Maeda, et al. There are three compounds in the BSCCO system, and Bi-2223 (Bi₂Sr₂Ca₂Cu₃O₁₀) has the highest critical temperature of around 110 K. Bi-2223 has many features; not only high critical temperature but also non-rare earth elements, and well aligned crystals through mechanical deformation.

Around 28 years have passed since the discovery of BSCCO. There are so many research and development works on Bi-2223 superconducting wires from fundamental aspects and the fabrication process to applications such as current leads, power cables, magnets, and motors. Especially, there are many daily operating apparatus incorporated with Bi-2223 superconducting wires due to their electro-magnetic, mechanical and thermal performance, and industrial productivity for long length wires with an affordable economic point of view.

The purpose of this book is to cover all aspects of Bi-2223 superconducting wires from fundamental research, and the fabrication process to applications. This book contains about 40 chapters written by distinguished experts in the world. Bi-2223 superconducting wires have possibilities to realize much higher performance than those of today. I really hope that this book could contribute to the future progress of oxide superconducting wires, including Bi-2223.

viii Preface

Finally, I invited Dr. Hitoshi Maeda to write an invited preface for this book, and he accepted my invitation. Unfortunately, he passed away on May 24th, 2014. My invitation could not be realized. For his memory, I would like to show his handwritten memorandum on his discovery of BSCCO which he wrote on November 20th, 2003 on his visit to Tsinghua University (Courtesy of Professor Zhenghe Han).

Tried to isolate two phases for 20 days by 4 posens - not succeeded

1988.1.20 Paper Submission Press Presentation

Key of the Discovery

- ① Corristance of two alkaline-earths Ca+Sr
 not usual idea in those days
 Adjustment of Cu-Cu distance → Wrong idea
 → lead to big success
 · Cansual Discovery
- No information on High-Te results
 Almost new discovery not come from the existed results and theory
- 3 My characteristics
 not like to follow other persons
 If knew Bi 2201, not challenged for Bi Crides
- · New materials searching work Risky Lat exciting

Kenichi Sato Editor

Table of Contents

Prefa	ce	vii
Part	1 Research	1
1.1.	Materials Aspects of Bi-2223	3
1.2.	Oxygen Doping of Bi-2223 Wires	17
1.3.	Magnetic Field and Temperature Dependence of Critical Currents of Bi-2223 Wires	29
1.4.	Electro-Magnetic Properties of Bi-2223 Wires	39
1.5.	AC Loss of Bi-2223 Wires	49
1.6.	Mechanical Properties of Bi-2223 Wires	61
1.7.	Thermal Properties of Bi-2223 Wires	73
1.8.	Thermal Stability of Bi-2223 Wires	105
1.9.	Thin Films of Bi-2223	123
Part	2 Fabrication	135
2.1.	Development and Manufacture of Bi-2223 Wires	137
2.2.	Microstructure Evolution of Bi-2223 Wires	151

2.3.	Lamination of Metals onto Bi-2223/Ag Wires				
2.4.	Quality Assurance of Bi-2223 Wires	181			
2.5.	Silver Contribution to Bi-2223 Wires in Terms of Cost	199			
Part	3 Applications	211			
3.1.	Current Leads for ITER	213			
3.2.	Current Leads for Conduction-Cooled Magnets	225			
3.3.	Saturated Iron Core Type Fault Current Limiter	237			
3.4.	Resistive-Type Fault Current Limiter	249			
3.5.	AmpaCity Project — World's First Superconducting Cable and Fault Current Limiter Installation in a German City Center	263			
3.6.	AC Cable: Yokohama Project	279			
3.7.	Research and Development of Bi-2223-Based AC Power Cables in Russia	289			
3.8.	DC Cable for Data Center	301			
3.9.	DC Cables for Metropolitan Networks: St. Petersburg Project	315			
3.10.	The Development and Demonstration of a $360\mathrm{m}/10\mathrm{kA}$ HTS DC Power Cable	331			
3.11.	DC cable for railway	339			
3.12.	Economical Aspects of Superconducting Cable	347			

	Table of Contents	xi	
3.13.	MRI Magnet for Human Brain	357	
3.14.	LTS/Bi-2223 NMR Magnets Operated Beyond 23.5 T (1 GHz)	367	
3.15.	Compact HTS Beamline and Magnetic Resonance Magnets	379	
3.16.	Conduction-Cooled Magnets for Industrial Applications	403	
3.17.	Dipole Magnet for Beam Line Switching	415	
3.18.	Ship Propulsion Motor Employing Bi-2223 and MgB_2 Superconductors	427	
3.19.	Axial-Gap Superconducting Synchronous Motors Cooled by Liquid Nitrogen	451	
3.20.	Radial-Gap Motor for Ship Propulsion	463	
3.21.	Induction/Synchronous Motor for Automobile	473	
3.22.	Development of High-Temperature Superconducting DC Motor for Automobiles	485	

PART 1 Research

Chapter 1.1

Materials Aspects of Bi-2223

Jun-ichi Shimoyama

Department of Physics and Mathematics, Aoyama Gakuin University, 5-10-1 Fuchinobe, Chuo-ku, Sagamihara 252-5258, Japan shimo@phys.aoyama.ac.jp

Among a large number of cuprate superconductors, Bi-2223 is one of the well-developed one as superconducting tapes because of its high $T_{\rm c}$, chemical stability and many other reasons. In this chapter, characteristic features of Bi-2223 are summarized and its superconducting properties as practical materials are compared with other superconductors. Furthermore, potentials of Bi-2223 materials are discussed from a viewpoint of controlling chemical composition.

1. Introduction

The successive discoveries of cuprate superconductors with high critical temperature $T_{\rm c}$ up to 135 K in 1986–1993 had opened possibility of applications of superconducting technologies at high temperatures, such as the boiling point of liquid nitrogen 77 K. Although metallic superconductors, such as Nb–Ti, Nb₃Sn, and Nb, have been extensively used as wires, tapes, films, and other materials thus far, they are applicable only at very low temperatures, liquid helium temperature 4.2 K or lower, due to their low $T_{\rm c}$, which limited application fields of superconducting technologies. In particular, robust cryostats equipped with high performance heat-insulating layers have been always indispensable. Cuprate superconductors, however, have layered crystal structure composed of superconducting and blocking (=non-superconducting) layers, resulting in various

Table 1. High- $T_{\rm c}$ cuprate superconductors, which can be candidate materials applicable at 77 K.

System	Chemical Formula	Abbr.	$T_{c(\max)}$ [K]	γ	Crystal Shape
RE-based	$REBa_2Cu_3O_y$	RE123	96	~ 7	block
	$RE_2Ba_4Cu_7O_y$	RE247	95		block, plate
	(RE,Ca) ₂ Ba ₄ Cu ₈ O ₁₆	RE124	90		block
Bi-based	$\mathrm{Bi}_{2}\mathrm{Sr}_{2}\mathrm{Ca}_{n-1}\mathrm{Cu}_{n}\mathrm{O}_{y}$	Bi22(n-1)n	110	~ 100	thin plate
	$(Bi,Pb)_2Sr_2Ca_{n-1}Cu_nO_y$	2	116	~ 50	thin plate
Tl-based	$TlBa_2Ca_{n-1}Cu_nO_y$	Tl12(n-1)n	132		plate
	$\mathrm{Tl}_{2}\mathrm{Ba}_{2}\mathrm{Ca}_{n-1}\mathrm{Cu}_{n}\mathrm{O}_{y}$	Tl22(n-1)n	127	~ 80	plate
Hg-based	$HgBa_2Ca_{n-1}Cu_nO_y$	Hg12(n-1)n	135	~ 80	block
	$(\mathrm{Hg},\mathrm{Re})\mathrm{Ba}_{2}\mathrm{Ca}_{n-1}\mathrm{Cu}_{n}\mathrm{O}_{y}$		135	~ 30	block

 $^{*\}gamma$ values are typical values at carrier optimally-doped state.

anisotropic properties. Characteristic features of superconducting cuprates, which can be synthesized as sintered bulks by solid-state reaction under ambient pressure and/or below 1 MPa, with higher $T_{\rm c}$ than 90 K are listed in Table 1.

For practical applications at higher temperature, Hg- and Tlbased superconductors are attractive because of their high T_{cs} . In fact, developments of superconducting materials had been attempted for these compounds for a decade after their discoveries. However, studies for developing these materials are almost stopped at the present stage, because any advantageous points were not found in critical current properties of their polycrystalline materials compared to those of RE- and Bi-based superconductors. This is partly due to containing highly volatile components at synthesis temperatures, Hg- or Tl-based superconductor, which is considered to deteriorate grain coupling, and poor cleavability, that will be mentioned later. Although, the Bi-based superconductors also contain volatile components, Bi and/or Pb, their equilibrium vapor pressures at synthesis temperature are much lower than those of Hg- and Tl-based superconductors. In addition, the Bi-based superconductors do not contain Ba, while it is included in other high- T_c compounds. Impurity phases and grain boundaries of cuprate superconductors containing Ba as a constituent element are quite sensitive to moisture and