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Preface

This text is intended as an introduction to elementary probability theory and sto-
chastic processes. It is particularly well suited for those wanting to see how prob-
ability theory can be applied to the study of phenomena in fields such as engineer-
ing, computer science, management science, the physical and social sciences, and
operations research.

It is generally felt that there are two approaches to the study of probability the-
ory. One approach is heuristic and nonrigorous and attempts to develop in the
student an intuitive feel for the subject which enables him or her to “think prob-
abilistically.” The other approach attempts a rigorous development of probability
by using the tools of measure theory. It is the first approach that is employed in
this text. However, because it is extremely important in both understanding and
applying probability theory to be able to “think probabilistically,” this text should
also be useful to students interested primarily in the second approach.

New to This Edition

The ninth edition contains the following new sections.

e Section 3.7 is concerned with compound random variables of the form
Sy = Z,N:l X, where N is independent of the sequence of independent and
identically distributed random variables X;, i > 1. It starts by deriving a gen-
eral identity concerning compound random variables, as well as a corollary
of that identity in the case where the X; are positive and integer valued. The
corollary is then used in subsequent subsections to obtain recursive formulas
for the probability mass function of Sy, when N is a Poisson distribution
(Subsection 3.7.1), a binomial distribution (Subsection 3.7.2), or a negative
binomial distribution (Subsection 3.7.3).
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o Section 4.11 deals with hidden Markov chains. These models suppose that
a random signal is emitted each time a Markov chain enters a state, with
the distribution of the signal depending on the state entered. The Markov
chain is hidden in the sense that it is supposed that only the signals and not
the underlying states of the chain are observable. As part of our analysis
of these models we present, in Subsection 4.11.1, the Viterbi algorithm for
determining the most probable sequence of first n states, given the first n
signals.

e Section 8.6.4 analyzes the Poisson arrival single server queue under the as-
sumption that the working server will randomly break down and need repair.

There is also new material in almost all chapters. Some of the more significant
additions being the following.

e Example 5.9, which is concerned with the expected number of normal cells
that survive until all cancer cells have been killed. The example supposes
that each cell has a weight, and the probability that a given surviving cell is
the next cell killed is proportional to its weight.

e A new approach—based on time sampling of a Poisson process—is pre-
sented in Subsection 5.4.1 for deriving the probability mass function of the
number of events of a nonhomogeneous Poisson process that occur in any
specified time interval.

o There is additional material in Section 8.3 concerning the M/M /1 queue.
Among other things, we derive the conditional distribution of the number of
customers originally found in the system by a customer who spends a time ¢
in the system before departing. (The conditional distribution is Poisson.) In
Example 8.3, we illustrate the inspection paradox, by obtaining the probabil-
ity distribution of the number in the system as seen by the first arrival after
some specified time.

Course

Ideally, this text would be used in a one-year course in probability models. Other
possible courses would be a one-semester course in introductory probability the-
ory (involving Chapters 1-3 and parts of others) or a course in elementary sto-
chastic processes. The textbook is designed to be flexible enough to be used in a
variety of possible courses. For example, I have used Chapters 5 and 8, with smat-
terings from Chapters 4 and 6, as the basis of an introductory course in queueing
theory.



Preface 3
Examples and Exercises

Many examples are worked out throughout the text, and there are also a large
number of exercises to be solved by students. More than 100 of these exercises
have been starred and their solutions provided at the end of the text. These starred
problems can be used for independent study and test preparation. An Instructor’s
Manual, containing solutions to all exercises, is available free to instructors who

adopt the book for class.

Organization

Chapters 1 and 2 deal with basic ideas of probability theory. In Chapter 1 an
axiomatic framework is presented, while in Chapter 2 the important concept of
a random variable is introduced. Subsection 2.6.1 gives a simple derivation of
the joint distribution of the sample mean and sample variance of a normal data
sample.

Chapter 3 is concerned with the subject matter of conditional probability and
conditional expectation. “Conditioning” is one of the key tools of probability the-
ory, and it is stressed throughout the book. When properly used, conditioning of-
ten enables us to easily solve problems that at first glance seem quite difficult. The
final section of this chapter presents applications to (1) a computer list problem,
(2) a random graph, and (3) the Polya urn model and its relation to the Bose-
Einstein distribution. Subsection 3.6.5 presents k-record values and the surprising
Ignatov’s theorem.

In Chapter 4 we come into contact with our first random, or stochastic, process,
known as a Markov chain, which is widely applicable to the study of many real-
world phenomena. Applications to genetics and production processes are pre-
sented. The concept of time reversibility is introduced and its usefulness illus-
trated. Subsection 4.5.3 presents an analysis, based on random walk theory, of a
probabilistic algorithm for the satisfiability problem. Section 4.6 deals with the
mean times spent in transient states by a Markov chain. Section 4.9 introduces
Markov chain Monte Carlo methods. In the final section we consider a model for
optimally making decisions known as a Markovian decision process.

In Chapter 5 we are concerned with a type of stochastic process known as a
counting process. In particular, we study a kind of counting process known as
a Poisson process. The intimate relationship between this process and the expo-
nential distribution is discussed. New derivations for the Poisson and nonhomo-
geneous Poisson processes are discussed. Examples relating to analyzing greedy
algorithms, minimizing highway encounters, collecting coupons, and tracking the
AIDS virus, as well as material on compound Poisson processes, are included
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in this chapter. Subsection 5.2.4 gives a simple derivation of the convolution of
exponential random variables. '

Chapter 6 considers Markov chains in continuous time with an emphasis on
birth and death models. Time reversibility is shown to be a useful concept, as it
is in the study of discrete-time Markov chains. Section 6.7 presents the computa-
tionally important technique of uniformization.

Chapter 7, the renewal theory chapter, is concerned with a type of count-
ing process more general than the Poisson. By making use of renewal reward
processes, limiting results are obtained and applied to various fields. Section 7.9
presents new results concerning the distribution of time until a certain pattern oc-
curs when a sequence of independent and identically distributed random variables
is observed. In Subsection 7.9.1, we show how renewal theory can be used to de-
rive both the mean and the variance of the length of time until a specified pattern
appears, as well as the mean time until one of a finite number of specified patterns
appears. In Subsection 7.9.2, we suppose that the random variables are equally
likely to take on any of m possible values, and compute an expression for the
mean time until a run of m distinct values occurs. In Subsection 7.9.3, we sup-
pose the random variables are continuous and derive an expression for the mean
time until a run of m consecutive increasing values occurs.

Chapter 8 deals with queueing, or waiting line, theory. After some preliminar-
ies dealing with basic cost identities and types of limiting probabilities, we con-
sider exponential queueing models and show how such models can be analyzed.
Included in the models we study is the important class known as a network of
queues. We then study models in which some of the distributions are allowed to
be arbitrary. Included are Subsection 8.6.3 dealing with an optimization problem
concerning a single server, general service time queue, and Section 8.8, concerned
with a single server, general service time queue in which the arrival source is a
finite number of potential users.

Chapter 9 is concerned with reliability theory. This chapter will probably be
of greatest interest to the engineer and operations researcher. Subsection 9.6.1
illustrates a method for determining an upper bound for the expected life of a
parallel system of not necessarily independent components and (9.7.1) analyzing
a series structure reliability model in which components enter a state of suspended
animation when one of their cohorts fails.

Chapter 10 is concerned with Brownian motion and its applications. The theory
of options pricing is discussed. Also, the arbitrage theorem is presented and its
relationship to the duality theorem of linear program is indicated. We show how
the arbitrage theorem leads to the Black—Scholes option pricing formula.

Chapter 11 deals with simulation, a powerful tool for analyzing stochastic mod-
els that are analytically intractable. Methods for generating the values of arbitrar-
ily distributed random variables are discussed, as are variance reduction methods
for increasing the efficiency of the simulation. Subsection 11.6.4 introduces the
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important simulation technique of importance sampling, and indicates the useful-
ness of tilted distributions when applying this method.
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Introduction to
Probability Theory

1.1. Introduction

Any realistic model of a real-world phenomenon must take into account the possi-
bility of randomness. That is, more often than not, the quantities we are interested
in will not be predictable in advance but, rather, will exhibit an inherent varia-
tion that should be taken into account by the model. This is usually accomplished
by allowing the model to be probabilistic in nature. Such a model is, naturally
enough, referred to as a probability model.

The majority of the chapters of this book will be concerned with different prob-
ability models of natural phenomena. Clearly, in order to master both the “model
building” and the subsequent analysis of these models, we must have a certain
knowledge of basic probability theory. The remainder of this chapter, as well as
the next two chapters, will be concerned with a study of this subject.

1.2. Sample Space and Events

Suppose that we are about to perform an experiment whose outcome is not pre-
dictable in advance. However, while the outcome of the experiment will not be
known in advance, let us suppose that the set of all possible outcomes is known.
This set of all possible outcomes of an experiment is known as the sample space
of the experiment and is denoted by S.

Some examples are the following.

1. If the experiment consists of the flipping of a coin, then
S={H,T}

where H means that the outcome of the toss is a head and 7 that it is a tail.



