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Preface

Many of the fundamentel ideas and concrete results of the modern theory of
completely integrable systems go back far into the past, and many of them can
be identified within the setting of classical differential geometry. In recent years,
there has been increasing interest in discrete integrable models — both classi-
cal and quantum mechanical — with discretized space and time variables. In
particular, a connection between discrete integrable systems and the geometry
of polyhedral surfaces and discrete curves has been discovered. It is surpris-
ingly close to the above-mentioned relation between the geometry of curves and
surfaces and soliton systems. Hence discrete integrable models and their cor-
responding geometries may be considered more fundamental than their smooth
counterparts, which one may obtain by suitable continuum limits.

Discrete integrable models are related not only to concepts of discrete ge-
ometry but also to interesting structures in discrete quantum field theory. In
particular it appears that in some cases quantum integrals or charges in the
discrete sine-Gordon theory can be identified with magnetic Schrédinger oper-
ators with a complex spectral structure, which can be determined by applying
Bethe-Ansatz methods.

The present book originated from the results achieved in the special research
project SFB 288 “Differential Geometry and Quantum Physics” and results pre-
sented at the conference “Condensed Matter Physics and Discrete Geometry™
organised by the editors and held at the Erwin Schrédinger Institute in Vienna
in February 1996. The intention of the conference at the Erwin Schrédinger In-
stitute, of the SFB project and of this book is the same: to combine the efforts
of mathematicians and physicists studying the geometry and physics of discrete
integrable systems. Indeed, in many cases they investigate the same models us-
ing different methods. The exchange of ideas, methods and models turned out
to be fruitful.

The book presents the results of this communication and cooperation. It
consists of a sequence of invited expositions by experts in the field, which we
hope forms a coherent account of the theory. The purpose is two-fold: first, to
explain the ideas and methods starting from an elementary level, and secondly,
to bring the reader close to the current state of research in this area.

AB.
R.S.
August 1998
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Introduction

Alexander I. Bobenko and Ruedi Seiler

Discrete integrable geometry is a newly emerging field of mathema?ics with
strong ties to physics and considerable potential for computer graphics. Our
book intends to introduce this field, to present its current status, and to lead
to the questions presently under investigation. There is, however, no complete
theory about this subject yet. For that reason much of the book is devoted to
examples.

Without going into detail about the long and interesting history of integrable
systems (the origin of discrete integrable geometry) we would like to mention
that in the modern theory of completely integrable systems, geometric concepts
and concepts of algebraic geometry play a key role and that many of the most
important ideas go back far into the past, and many of them can be found in
the classic books by Darboux and Bianchi.

Historically, the relationship between geometry and integrable partial differ-
ential equations emerged more than a century ago from the discovery that the

sine-Gordon equation
Py +sing =0 (0.1)

describes surfaces with constant negative Gaussian curvature.
Today this equation is the paradigm of non-linear integrable partial differen-
tial equations. Equations of this type often appear as compatibility conditions

Uy(A) = V(X)) + [UMN), V(N =0 (0.2)
of a linear system of differential equations
¥, =U\)9, v, =V(A)L. (0.3)

In differential geometry, ¥ has a natural interpretation as a moving frame at-
tached to the surface in Euclidean space. Equation (0.2) is called the Lax rep-
resentation of equation (0.1). The linear equations (0.3) relate the frames at
neighboring points. The spectral parameter A parameterizes a family of surfaces
of constant negative curvature which have the same characteristic features (for
details see the contribution of Bobenko and Pinkall; Chapter 1).

After the discovery that the sine-Gordon equation analytically describes con-
stant negative Gaussian curvature surfaces, similar equations were found for
other classes of surfaces. From the very beginning it was noticed that these
equations have remarkable solutions corresponding to certain special surfaces.
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Later it became clear that these equations form some of the most fascinating
examples of infinite-dimensional integrable systems. The special solutions men-
tioned above became known as soliton solutions.

As a side remark we mention that, surprisingly, long before the theory of
solitons, geometers sometimes used the modern terminology and called some
equations “completely integrable” ! (which does not, however, coincide with the
precise definition that is used today in the theory of Hamiltonian systems). At
that time, the Hamiltonian interpretation and, more generally, any physical ap-
plication of the integrable models studied in geometry, were unknown. Although
the Hamiltonian interpretation is not very essential from the point of view of
the classical differential geometry of curves and surfaces, in its modern setting
of the R-matrix approach it is closely related to the geometrical description in
the form of the Lax representation.

Discretization appeared in the geometry of surfaces in the 19th century, al-
beit in a sense which is slightly different from the one used today. Its level of
abstraction proves, however, the impressive depth of understanding of the ge-
ometers at that time. They considered the existence of special transformations as
one of the crucial properties in order to single out geometries of special interest.
One famous example of such a transformation is the Bicklund transformation
for surfaces with constant negative Gaussian curvature. For many geometries—
nowadays called integrable—it was shown that Bicklund transformations are
permutable, i.e. there is a natural homomorphism from the square lattice (the
free abelian group with two generators) to the Bicklund transformations. In
particular it was Bianchi who stressed the importance of permutability. This
group property of the Béacklund transformation has been completely character-
ized only recently in terms of loop groups in the theory of solitons. In these
terms, Bécklund transformations act as a multiplication of the frame ¥ by an
element of the loop group. They are sometimes called a dressing transformation.
It is remarkable that one of the last books of this “classical” period of differential
geometry has the title Transformations of Surfaces, written by Eisenhart.

A different and entirely independent approach to discrete integrable systems—
classical and quantum—originates from the analysis of exactly solvable models
in statistical mechanics. The solution of the first model of this class, the Ising
model, could be related to its integrability only in retrospect. Thus it was not
until the seminal work of Lieb on the ice model, sometimes called the 6-vertex
model, that integrability became the key property for solving models of statisti-
cal mechanics. Using the results by Yang and Yang on the ground state energy of
the Heisenberg chain, Lieb computed the residual entropy at zero temperature.
The basic method for the analysis of the spectrum of the Heisenberg chain is
the Bethe Ansatz. Its algebraic version, developed mainly in Leningrad, can be

For example, Tzitzéica in Sur une nouvelle classe de surfa i i
y ) ces, C.R. Acad. Sci. Paris, 150
(1910) 955-956, 1227-1229 discusses “systéme complétement intégrable“ in affine differ(’ential
geometry.
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used to compute spectral properties of quantum integrals (see the contribution
of Kellendonk, Kutz and Seiler; Chapter 10). ' )

In recent years, there has been considerable progress in the theor)f of dis-
crete integrable models, both classical and quantum mechanical. In particular, a
connection between discrete integrable systems and the geometry of polyhedral
surfaces and discrete curves has been discovered. It turns out that basic concepts
of smooth geometry have natural discrete counterparts. In some sense, discrete
integrable models appear to be even more fundamental then their smooth coun-
terparts. This is reminiscent of classical and quantum mechanics, where quite
similarly the newer theory—containing the older as a limiting case—is more
fundamental than its predecessor.

The basic aspect of all models discussed in this book is their integrability
in the sense of Hamiltonian systems. Recall that for continuous Hamiltonian
systems on a 2n-dimensional symplectic manifold called phase space, trajecto-
ries of the evolution are flow lines of a Hamiltonian vector field, generated by a
function on phase space, the Hamiltonian. The evolution of a discrete Hamil-
tonian system on such a space is given by a symplectomorphism: a map which
is diffeomorphic and preserves symplectic structure. A Hamiltonian system—
continuous or discrete—is called integrable if there exist n independent integrals
of motion (functions which are constant on trajectories of the evolution, i.e.
which commute with respect to the Poisson bracket). A differential or a differ-
ence equation is called integrable if it describes the evolution of an integrable
Hamiltonian system. The sine-Gordon equation is an example. It is, however,
an infinite-dimensional Hamiltonian system, and this adds some analytic com-
plications. To avoid these, some authors refer to integrability in a looser sense,
namely, requiring only that there are infinitely many independent integrals of
motion.

The simplest example for a discrete Hamiltonian evolution is the restriction of
a Hamiltonian flow to some integer points in time. In this case, one says that the
symplectomorphism has an interpolating flow. Not all symplectomorphisms are
of this nature, and even worse, not all symplectomorphisms have a single integral
in terms of a continuous function on phase space. A systematic procedure to
construct integrable models with an interpolating flow based on the so called

-matrix approach is explained in the contribution of Suris (Chapter 7).

As we already mentioned, the sine-Gordon equation (0.1) is one of the sim-
plest integrable partial differential equations. It will serve as a model for ex-
plaining some of the main concepts of this book.

The sine-Gordon equation describes surfaces with constant negative Gaussian
cur.vat.ure (K-surface). More precisely, ¢(z,y) is the angle between the asymp-
tqtlc lines on an asymptotically parameterized K-surface (z,y) — F(z,y) € R3.
Dls:crete K-surfaces are maps F': 22 — R3 with special natural geometric prop-
e}rtles. Every image point together with all its nearest neighbors belongs to a
sm_gle Plane. Furthermore, the Euclidean distance between neighboring image
points in each of the two coordinate directions is constant. Discrete K-surfaces
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XX

are parameterized by the second-order difference equation (for notati'ons and
more details see the contribution of Bobenko and Pinkall; Chapter 1) given by

bu + Ga — ¢t — b = 2arg(1 + ke™) + 2arg(1 + ke~ ),

or in exponential (z = €'?) form
2tk zo+k
1+kzy 1+ k2,

This equation is integrable and posesses causal propagation. Similar to the
smooth case, ¢ is the angle between neighboring edges. k is a discretization

parameter.
The quantum discrete sine-Gordon equation is

0uQu = erQr+k Q. +k
YT T ke Qr 1+ keihQ,

Here the fields Q;, j = u,d,!l,r, are unitary operators, which do not commute
any more, as opposed to the classical case. In the context of a discrete quantum
field theory, the discrete sine-Gordon equation defines an automorphism of the
observable algebra which is a non-commutative torus of arbitrary dimension. It
is interpreted as discrete time evolution. Actually, the commutation rules are
such that among the operators Q on a space-like staircase line only the nearest
neighbors do not commute:

Q4Qi = 7% QQq, Q4Qr = e Q. Q.

Notice the similarity of the quantum and classical equations.
The simplest special case of the sine-Gordon model when ¢(z,y) depends on
the combination ¢t = z + y only is the pendulum equation

Pu +sing = 0. (0.4)

Zu’d =

Let us describe the corresponding discrete model in some detail since it serves
well for explaining some of the general concepts used throughout this text (for
details see the contribution by Kellendonk, Kutz and Seiler; Chapter 10). The
phase space of the discrete pendulum is the two-dimensional torus M = Sl x st
with coordinate functions z; and 22, which are complex numbers of modulus one.
The Poisson structure on M is given by the equation,

{z1,22} = 2122

The equation of motion (21,22) » (22,23) is a special case (2; = z,) of the
discrete sine-Gordon equation? and is given by the formula

P k+ 2 2
198 = l+k22 ’

2For simplicity, we refer to a special case of the discrete pendulum.
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which is a discretization of (0.4). The dynamics preserves the Poissonian struc-
ture and the level sets of the function

-1, -1 17, -1 -1
H(z1,22) =2(z1 + 22 + 2] + 23 1) + k(e122 + 27 2y ) + k7225t + 2927 ).

Hence the discrete pendulum is integrable. This is a remarkable fact,‘sin§e tge
discrete pendulum equation is rather close to the stand_ard map, which is the
paradigm of chaotic and therefore non-integrable dynamics, after. all. .

The algebra of observables of the discrete quantum pendu.lum is known under
three different names. It is called the two-dimensional quantized torgs, the rota-
tion algebra and the discrete Weyl-Heisenberg algebra. The Iatte?r is generated
by two unitaries Q; and @, which satisfy the commutation relation

Q1Q2 = e72"QyQ,.

Quantum dynamics (Q1,Q») — (Q2,Q3) is by definition derived from classi-
cal dynamics in the most naive manner:

k+ e“‘QQ ?
Q3@ = (m) . (0.5)

This is interpreted as the quantum discrete time evolution and notably an algebra
automorphism. In close analogy to the classical situation the operator

H(Q1,Q2) =2(Q1 + Q2 + Qi +Q3) +.
k(e*Q,Q, + e *Q3Q7) + k! (e"Q2Q7 + e Q, Q3)

is a quantum integral, i.e., it is invariant under the automorphism defined by
equation (0.5). Such operators are known as operators of the Hofstadter type,
which play an important role in solid state physics.
In Fig. 1 the interrelations between geometry, classical Hamiltonian dynamics—
in short: classical systems—and quantum physics in their continuous and dis-
crete versions are shown schematically. Looking at two neighboring boxes, it is
straightforward to go in one direction by taking an appropriate limit or by sim-
ple computation. The other direction is typically much more difficult, because it
involves some clever guess. To go, for instance, from a box in the right column to
the one adjacent to the left, one takes the limit of zero lattice spacing. Similarly,
the classical limit leads from non-commutative quantum theory to commuta-
tive classical theory. To g0 from geometry to classical Hamiltonian systems one
simply analyzes the algebraic implications of the consistency equations, the Lax
representation. The arrows are oriented in the simple direction.

The other directions are called deformations. Discrete geometry and quan-
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Smooth limit

Discrete
;f;ﬁige integr atble Geometry
geometry
(Surfaces) (Nets)
Compatibility
conditions
Discrete )
Integrable integrable Cl&SSlcal
systems systems Systems
Classical
limit
t
Integrable %iagglrg{ﬁe Q uantum
quantum field systems Svyst
theory with discrete ystems
space-time

FiG. 1. Integrable geometry and physics

integrability, intrinsic geometric properties, and what is called the correspon-
dence principle of quantum mechanics.

The structure of the book naturally follows Fig. 1 — the contributions are
organized in three sections: Geometry, Classical Systems, and Quantum Sys-
tems. Most of the contributions address the following problem: how to invert
the horizontal arrows of the diagram, i.e. how to find discretizations preserving
the integrability property. In particular, Bobenko and Pinkall (Chapter 1) in-
troduce special nets which are discrete analogs of the classical geometries. Suris
(Chapter 7) develops a discretization method based on the R-matrix descrip-
tion. A different method, which is useful also in other contexts, is based on the
discretization of the action. This is the main idea in the short note by Kutz
(Chapter 9). Faddeev and Volkov (Chapter 11) describe quantum integrable
models on discrete space-time concentrating on the algebraic part of the theory.
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Of course, the real picture of interrelations is more complicated. than the
present diagram suggests. In particular, geometry and quantum physics are not
just two independent extensions of classical theory. There are seve.aral direct
connections between them. Here one can mention, for exanllple,' an 1.mportant
application of the quantum theory for constructing topological invariants (see
the contribution by Kashaev; Chapter 13). In some cases, for example for the
discrete sine-Gordon equation, the introduction of the proper quantum variables
has been motivated geometrically (see the contribution by Kellendonk, Kutz and
Seiler; Chapter 10).

In a way, the first row of the diagram represents the essence of the theory
of solitons in the smooth setting: given a system, first find the corresponding
Lax representation, and secondly find the Hamiltonian interpretation (R-matrix
description). The latter is a method to find a quantum integrable version of the

model.
Let us now give a short description of the contents of different chapters of

the book.
Part I: Geometry

A.I. Bobenko and U. Pinkall start this section with definitions of discrete
analogs of various classes of surfaces and mappings described by integrable sys-
tems. These discretizations are characterized by the property that the inte-
grability is preserved, i.e., they are described by discrete integrable systems.
As a corollary, rich algebraic structures such as the loop group description, the
Bécklund-Darboux transformation, etc. of the corresponding smooth geometries
persist in the discrete case. The contribution is a survey of results obtained in
this field, and it serves as an introduction to other contributions in that chapter.
Combining methods of soliton theory with geometrical intuition, many concrete
discrete geometries are described.

Two basic examples are:

e discrete K-surfaces (surfaces with constant negative Gaussian curvature),

* discrete H-surfaces (surfaces with constant mean curvature),
which are considered in detail. These nets are first derived analytically by dis-
cretizing the Lax representation of the corresponding smooth surfaces, preserving
the corresponding loop groups. After that, geometrical properties of the nets de-
fined in this way are studied. Tt is shown that these are natural discrete analogs
of geometric properties of the corresponding smooth surfaces.

Other discrete integrable geometries are obtained from generalizations or
specializations of these two examples. In all the cases geometrical definitions
of the nets are presented. These definitions refer neither to integrable systems
nor to the loop group interpretation. For some cases the corresponding Cauchy
problems and examples of surfaces are discussed.

U. Hertrich-Jeromin, T. Hoffmann, and U. Pinkall continue with a
purely geometrical description of a discrete version of the Darboux transform for
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isothermic surfaces. Christoffel and Darboux transforms of discrete isothermic
nets in the four-dimensional Euclidean case are studied. Definitions and. basic
properties are derived. Analogies with the smooth case are discussed and discrete
Ribaucour congruencies are defined. Surfaces of constant mean curvature are
special among all isothermic surfaces: they can be characterized by the fact
that their parallel constant mean curvature surfaces are Christoffel and Darboux
transforms at the same time. This characterization is used as a definition of
discrete nets of constant mean curvature. Starting with this definition, basic
properties of discrete nets of constant mean curvature are derived.

This chapter can be considered as complementary to the contribution of
Bobenko and Pinkall, since it does not refer to the analytic description, loop
groups and theory of discrete integrable systems. The discrete isothermic and
constant mean curvature nets are investigated completely in internal geometrical
terms.

Next T. Hoffmann describes discrete Amsler surfaces and shows how they
are related to a discrete Painlevé IIT equation. Amsler surfaccs are surfaces with
constant negative Gaussian curvature which have two straight asymptotic lines.
The corresponding solution of the sine-Gordon equation is known to reduce to
a special case of the Painlevé III equation. On the other hand, the Painlevé III
equation can be obtained as an isomonodromy condition for the moving frame of
the surface with respect to the spectral parameter. It is shown that both these
properties persist for discrete surfaces with constant negative Gaussian curva-
ture (discrete K-surfaces). Starting from the geometric properties of the Amsler
surfaces, a discrete analogue of the surface is obtained. A discrete Painlevé III
equation is derived as an isomonodromy problem for the extended (discrete)
frame.

In his next contribution T. Hoffmann presents a discrete analogue of the
Dorfmeister-Pedit-Wu (DPW) method. He shows that discrete H-surfaces and
the corresponding solutions of the discrete sinh-Gordon equation can be con-
structed from discrete holomorphic maps and that the discrete DPW method
is a quite efficient way of construction. As an example, discrete Delauney and
Smyth surfaces are constructed which correspond to pendulum and rotational
invariant solutions of the (discrete) sinh-Gordon equation.

Affine spheres are another well-known example of integrable geometry. A.l
Bobenko and W.K. Schief start with a geometrically motivated definition of
discrete indefinite affine spheres. These nets are defined as distinguished discrete
A-surfaces characterized by a certain affine property of elementary quadrilaterals.
The geometrical definition is a starting point of further algebraic investigation.
It is shown that the corresponding difference frame equations by inserting of
an additional parameter can be extended to the Lax representation. The corre-
sponding difference Gauss equation is derived. It is an integrable discretization of
the Tzitzeica equation. Discrete indefinite affine spheres are interpreted in terms
of the permutability theorem for the Bicklund transformations of the smooth
affine spheres. A Bicklund transformation generating discrete affine spheres is
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obtained in a purely algebraic manner. An interpre?tat?on of the Gauss equations
for discrete affine spheres in terms of loop groups is given. o
This part closes with a contribution by A. Doliwa and P.M. ‘Santm‘l, de-
scribing integrable features of geometry of discrete curves and hlgher'dlmen—
sional lattices. A classical result in soliton theory establishes the equivalence
between the nonlinear Schréodinger dynamics, the evolution of the Heisenbferg
ferromagnet, and the motion of a vortex filament under the Localized Inc}uct%on
Approximation. This approach is generalized to a discrete context by Co.nSId.erlng
the evolution of a discrete (piecewise linear) curve whose Frenet equation is the
Ablowitz~Ladik spectral problem. A natural geometrical analog of the Laplace
sequence for conjugate nets (elementary quadrilaterals are planar) is suggested.
It is shown that algebraically it is described by the discrete generalized Toda
system. Multidimensional lattices with planar quadrilaterals (discrete conjugate
systems) and their special case-circular lattices (O-systems)-are also studied.

Part II: Classical Systems

First, Y.B. Suris shows how to define and study intcgrable discretizations using
the r-matrix approach. A short overview of the Lie-algebraic r-matrix scheme for
finite-dimensional integrable systems of classical mechanics is given. A general
abstract approach to the bi-Hamiltonian property of such systems is discussed,
based on the concept of linear and quadratic r-matrix Poisson brackets on Lie al-
gebras and associative algebras. Lax equations are identified as (bi)-Hamiltonian
systems on Lie algebras corresponding to Ad*-invariant Hamiltonian functions.
A connection between Lax representations and factorization problems in Lie
groups is recalled.

A general formula is obtained defining a map as time ~h shift along the tra-
Jectories of an arbitrary Hamiltonian flow in r-matrix hierarchies. This formula
is the basis of a systematic derivation of integrable discretizations for such flows.
A characteristic feature of the discretizations obtained along these lines is that
they belong to the same hierarchy as their continuous time counterparts, i.e.
they have the same Lax matrices and the same integrals of motion. An under-
lying invariant Poisson structure, interpolating Hamiltonian flow, and a solution
in terms of matrix factorizations appear as by-products of the discretizations
obtained by this approach.

For a few years there have existed “exact” discretizations of the famous
Painlevé equations, PI-VI. They have been obtained by various methods. A
striking feature is the fact that there seems to be more than one discrete analog
corresponding to one and the same continuous Painlevé transcendent. In his
contribution Frank Nijhoff discusses a particular method to obtain such dis-
crete Painlevé equations—the lattice similarity approach by which one applies
a proper analogue of similarity reduction to integrable lattice equations such as
the lattice KdV and modified KdV equation. This approach could ultimately
explain the structure behind the discrete Painlevé equations and reveal some of
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the relations between the various alternate forms of the discrete transcendents.
One particular new class of equations that comes out of this approach is a class of
third-order difference equations of “Schwarzian” type related to the second-order
difference Painlevé equations.

Nadja Kutz finishes this part with an investigation of Lagrangian systems
which belong to evolutions of doubly discrete sine-Gordon type. The phase space
structure of these models and the relations between them are discussed in terms

of symplectic geometry.
Part ITII: Quantum Systems

J. Kellendonk, N. Kutz, and R. Seiler start this part with a discussion of
some discrete Schrodinger operators. These operators arise as Hamiltonians for
the description of charged particles in a magnetic field. The paradigm is the
Hofstadter Hamiltonian. Miraculously, these operators are at the same time
integrals for the quantum pendulum. They all belong to the discrete Weyl-
Heisenberg algebra on Z? or, in another terminology, to the rotation algebra or
the quantized torus.

The first part of the chapter is about the analysis of the discrete Weyl-
Heisenberg algebra, its irreducible representation, and automorphism. This is a
basic concept, which is used in one way or other in every contribution in this
section. The discrete Weyl-Heisenberg algebra can be interpreted as the kine-
matical framework of discrete elementary quantum mechanics. In the following,
models of the Hofstadter type and the integrals of the quantum pendulum are
explained and their spectrum is analyzed by means of the Bethe Ansatz intro-
duced into this context by Wicgmann and Zabrodin, and Faddeev and Kashaev.
In particular this applies also in the case of irrational flux.

L. Faddeev and A. Volkov continue with developing the algebraic frame-
work of an integrable discrete quantum field theory in one space and one time
dimension using the example of the Liouville model. The explicit form of the
time-one (discrete) evolution operator is given for several examples of integrable
models on 1+1-dimensional discrete space-time. The locality of the Hamiltonian
in classical continuous limit is changed into the multiplicative locality of the evo-
lution operator. The exchange relations for the corresponding local factors are
discussed.

Next R. Kashaev and N. Reshetikhin study the affine Toda field the-
ory as a 2+1-dimensional system. The third dimension appears as the discrete
space dimension, corresponding to the simple roots in the Ay affine root sys-
tem, enumerated according to the cyclic order on the A ~ affine Dynkin diagram.
They show that there exists a natural discretization of the affine Toda theory,
where the equations of motion are invariant with respect to permutations of all
discrete coordinates. The discrete evolution operator is constructed explicitly.
The thermodynamic Bethe Ansatz of the affine Toda system is studied in the
limit L, N — oco. Some conjectures about the structure of the spectrum of the
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corresponding discrete models are stated.

The contribution of R. Kashaev is a survey of recent results on quantum
invariants of knots and links, associated with the quantum dilogarithm at roots
of unity. The construction can be considered as a combinatorial (simplicial)
analog of Witten’s realization of the Jones polynomial as expectation values of
Wilson lines in quantum Chern~Simons theory. In the classical limit the invari-
ant obtained, evaluated on hyperbolic knots and links, seems to reproduce their
hyperbolic volumes. The latter implies the possible relation of the construction
to quantum Euclidean three-dimensional gravity with negative cosmological con-
stant.

T. Richter and R. Seiler finish this section with a short presentation of
a model for the quantum Hall effect in the framework of discrete elementary

quantum mechanics.

Discrete integrable geometry and quantum physics is by no means a finished
piece of mathematical science. On the contrary, it seems to be at its beginning.
The goal of research in this field, as we see it, is to develop a theory to complete
Fig. 1. The continuum theory—geometry, classical and quantum integrable
models—should be looked at as just a limiting object of this more fundamen-
tal discrete theory. The modern state of research in this field presented in this
book shows that many fragments of this discrete master theory are already con-
structed. On the other hand, some important ingredients of the theory are still
missing. We believe that there will be further rapid progress in the field and
that in the near future all the ingredients of Fig. 1 will be developed to the same
extent as the theories of the left (continuous) part of the figure are nowadays.
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