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Preface

Why Should We?
Some Personal Comments from One Happy User.

When I embarked into the world of mathematical physics, learning
about “axiomatic” quantum field theory from H. Lehmann and W. Zimmer-
mann, and reading Borchers, Symanzik, Haag, Streater, and Wightman, I
was impressed with the beauty and clarity of the LSZ and Wightman frame-
works, - and quite depressed afterwards. In his book on the general theory
of quantized fields, the great Res Jost wrote at the time:! “We had very
compelling reasons for not mentioning any models except free fields. No
interesting models are known ...”, bad news for a junior researcher who
wondered: “Will there ever be any?” And if so: “How to construct them?”
Of course there were attempts; the best of them were visionary - and bad
mathematics. Let me single out Feynman’s “sum over histories” and the
observation of Coester and Haag? that quantum field theory dynamics is
in fact encoded in the vacuum. We knew even then that the Feynman
integral was not an integral, and that the manipulations of Coester and
Haag could not be justified mathematically, but it also became quite clear
that there was by far not enough of infinite dimensional analysis in the
physicists’ mathematical tool kit. Things did get better with the physics
breakthrough that goes under the name of “constructive quantum field the-
ory”, and when, on the mathematical side, 40 years ago the foundations of
white noise analysis were laid.

Of course white noise analysis does not claim a monopoly: Mallavin
calculus is a close relative, much like in finite dimensional analysis where
there are many different Gelfand triples, suited to address particular needs.
As Paul André Meyer once said in a heated debate - don’t argue about the
advantages of one approach or the other, show what you can do with the
one that you prefer. My good friend J-A. Yan, together with Z-Y. Huang,
presents the two approaches side by side in his beautiful book.?
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So why should we use white noise analysis? Well one reason is of course
that it fills that earlier gap in the tool kit. As Hida would put it, white noise
provides us with a useful set of independent coordinates, parametrized by
“time”. And there is a feature which makes white noise analysis extremely
user-friendly. Typically the physicist — and not only he — sits there with
some heuristic ansatz, like e.g. the famous Feynman “integral”, wondering
whether and how this might make sense mathematically. In many cases the
characterization theorem of white noise analysis provides the user with a
sweet and easy answer. Feynman’s “integral” can now be understood, the
ansatz of Haag and Coester is now making sense via Dirichlet forms, and
so on in many fields of application. There is mathematical finance, there
have been applications in biology, and engineering,* many more than we
could collect in the present volume, for some of them see e.g. Bernido and
Bernido.?

Finally, there is one extra benefit: when we internalize the structures
of Gaussian white noise analysis we will be ready to meet another close
relative — we will enjoy the important similarities and differences which we
encounter in the Poisson case, championed in particular by Y. Kondratiev
and his group, let us look forward to a companion volume on the uses of
Poisson white noise.

The present volume is essentially a collection of autonomous contribu-
tions. Fortunately however, the introductory chapter on white noise anal-
ysis was made available to the other authors early on for reference and to
facilitate their efforts towards conceptual and notational coherence.

At the end of such a preface one has the right of a note of gratitude to
friends and teachers. Some of the latter I have already mentioned. Then
there is the “white noise community”, too big by now to list it here. But I
guess I have made the acquaintance and won the friendship of almost all of
the white noise mathematicians you find quoted in the present volume. I
also thank all of them for what they taught me. I thank the authors of the
different chapters, I thank S. C. Lim of World Scientific for his invitation,
help, and great patience, and can now finally, with the contributions in
hand, enjoy the encouragement I got for this undertaking. May the readers
enjoy those contributions and may they feel encouraged to use white noise.

Ludwig Streit, August 2016
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Chapter 1

White Noise Analysis: An Introduction

Maria Joao Oliveira
Unwversidade Aberta, P 1269-001 Lisbon, Portugal
CMAF-CIO, University of Lisbon, P 1749-016 Lisbon, Portugal
myjoliveira@ciencias.ulisboa.pt

The starting point of White Noise Analysis!! and?14-16:20,21,34,39 jg 5
real separable Hilbert space H with inner product (-, ) and the correspond-
ing norm | - |, and a nuclear triple

NCcHCN,

where N is a nuclear space densely and continuously embedded in H. Of
course, in a general framework, a priori there are several different possi-
ble nuclear spaces. However, in concrete applications, the application will
suggest the use of particular nuclear triples. For example, in the study of
intersection local times of d-dimensional Brownian motions it is natural to
consider the space H = L*(R,R%) =: L3(R) of all vector valued square
integrable functions with respect to the Lebesgue measure on R and the
Schwartz space N' = S(R,R?) =: S4(R) of vector valued test functions,
while in the treatment of Feynman integrals the spaces L?(R) := L?(R,R),
S(R) := S(R,R) are the natural ones.

Since nuclear triples are the basis of the whole White Noise Analysis,
we start by briefly recalling the main background of the theory of nuclear
spaces, due to A. Grothendieck.” For simplicity, instead of general nuclear
spaces, cf. e.g.,4042:45,50 e just consider nuclear Fréchet spaces, which are

the only ones needed in this book. For more details and the proofs see
2,3,9,14
(T i

1. Nuclear Triples

As before, let H be a real separable Hilbert space. We consider a family
of real separable Hilbert spaces H,,, p € N, with Hilbertian norm |- |, such
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that
HOH1D...DOHpD ...
so that the corresponding system of norms is ordered:
€]~ h=<. X |~ |p< e

In addition, we assume that the intersection of the Hilbert spaces H,, de-
noted by
N = ﬂ Haps (1)
PEN
is dense in each space H,, p € N.

Definition 1. The linear space A is called nuclear whenever for every
p € N there is a ¢ > p such that the canonical embedding H, — H,, is a
Hilbert-Schmidt operator.

From now on we shall assume that all spaces (1) are nuclear and fix on
N the projective limit topology, that is, the coarsest topology on N with
respect to which all canonical embeddings N' < H,,, p € N, are continuous.
Or, in an equivalent way, a sequence (&,),ecn of elements in N converges
to £ € NV if and only if (£,)nen converges to £ in every Hilbert space H,p,
p € N. Tt turns out that a nuclear space N' endowed with the projective
limit topology is a complete metrizable locally convex space, meaning that
it is a Fréchet space. In order to mention explicitly this topology fixed on
N, we shall use the notation

N = prlim#H
PLEN™P
and call such a topological space a projective limit or a countable limit of

the family (Hp)pen.
For each p € N, let now H_,, be the Hilbertian dual space of H, with

respect to H with the corresponding Hilbertian norm |-|_,. By the general
duality theory cf. e.g.,’ we have
N = MU,
peEN

where N is the dual space of N with respect to H. Unless stated otherwise,
we shall consider N7 endowed with the inductive limit topology, that is, the
finest topology on N with respect to which all embeddings H_, < N are
continuous. As a topological space, we shall denote it by

N’ = indlimH_,
peEN
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and call it an inductive limit of the family (H_,)pen.
In this way, using the Riesz representation theorem to identify H with
its dual space H’, we have defined a so-called nuclear or Gelfand triple:

NCHCN.

By construction, it turns out that the bilinear dual pairing (-,-) between
N’ and N is defined as an extension of the inner product on #:

(h,€) = (h,§), heH,EeN.

Example 1. (i) The Schwartz space S(R) of rapidly decreasing C°°-
functions on R endowed with its usual topology given by the system of
seminorms

nd™€

w G ™)

sup

, &€ SR),m,neNy:=NU{0}
u€R

is a first example of a nuclear space. Indeed, given the Hamiltonian of the
quantum harmonic oscillator, that is, the self-adjoint operator on L?(R)
defined on S(R) by

2
(HE)(w) = -5

we can define a system of norms | - |, by setting

€lp == |HPE|, €€ SR),peN,

(u) + (u? +1)é(u), u€R,

where the last norm is the one on L?*(R). It turns out (cf. e.g.,'24347) that
this system of norms is equivalent to the initial system of seminorms, and
thus both systems lead to equivalent topologies on S(R). In addition, the
completion of S(R) with respect to each norm |- |, yields a family of Hilbert
spaces H, and

S(R) = prli .
(R) = prlimi,
see e.g.,'*. Therefore, for the dual space S’(R) of S(R) (with respect to
L%(R)) of Schwartz tempered distributions we have
S'(R) = indlimH_,,.
(®) = indlimH_,
(ii) The previous example extends to the space S;(R) of vector valued

Schwartz test functions for the operator H defined on Sy(R) by
(HE)(u) := (H 1 (u), ..., (HE)a(w), &= (&,-.-,8a),& € S(R) (2)
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with
d2€z‘ 2 :
(HE);(u) :== — T (u) + (u* + 1)&(u) = (HE) (u), i=1,...,d,u € R.
This leads to the following system of increasing Hilbertian norms | - |,
peN,

d d
€2 = S 1612 = STIHPER, €= (61, €0). 6 € SR)i=1,....,d, (3)
=1 =1
where the last sum in (3) is the square of the L2(R)-norm of (2), and to
the corresponding Hilbert spaces H,, defined by completion of S4(R) with
respect to the norms (3). As in (i), we have

o . / o .
Sq(R) = pr}ljlég’}-lp, Si(R) = 1ndzl)1€r§1\{7-l_p,

being S/,(R) the space of vector valued Schwartz tempered distributions.

(iii) Example (i) also extends to the Schwartz space S(R¢, R) of smooth
functions on R%, d > 2, of rapid decrease (shortly S(R?)) and to its dual
space S'(R4) of Schwartz tempered distributions. In this case, the usual
topology on S(R?) is given by the family of seminorms indexed by multi-
indices (a1, ...,aq), (B1,---,B4) in Ng,

sup ult . ug (8{3‘ ...35"5) (u)1 , €€ SRY,

where 9;, i = 1,...,d, is the partial derivative on R% with respect to the i-
th coordinate. Given the Hamiltonian of the quantum harmonic oscillator,
that is, the self-adjoint operator on L?(R%,R) =: L?(R?) defined on S(R%)
by
(HE)(w) := —(A&)(u) + (Juf’ + 1)é(w), ueR,
being A the Laplacian on R?, we define a system of norms | - |, on S(R9)
by
|€lp = |HPE|, &€ SRY),peN,

where the last norm is the one on L?(R?). As in Example (i), it turns
out cf. e.g.,124347 that such a system is equivalent to the above system of
seminorms, leading then to equivalent topologies on S(R?). In addition,
cf. e.g.,'* we have

dy _ .
SR?) = prim#y,
where each H,, p € N, is the Hilbert space obtained by completion of S(R%)
with respect to the norm | - |,. Thus
S"(R%) = indlimH_,.
(R%) =1in plglNH P
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2. Gaussian Space

Given a nuclear triple N' C H C N, let Cs(N”) be the o-algebra on N’
generated by the cylinder sets

{zxe N : ((z,01),...,{x,0n)) € B,p1,...,0n € N,B € B(R"),n € N},
where B(R™), n € N, is the Borel o-algebra on R™.

Theorem 1. (The Minlos Theorem?®”) Let C be a complez-valued func-
tion on N fulfilling the following three properties:

(1) C(0) =1,
(ii) C is continuous on N,
(iii) C is positive definite, i.e..

Z C&i—&)zZ; >0, &,....6n€N,21,...,2n €C,neN.

1,7=1

Then, there is a unique probability measure puc on (N',Co(N")) which char-
acteristic function is equal to C, that is, for all € € N

[ exp(i(a.) duota) = C(©) (4)
Nl

For a presentation of the Minlos theorem, including support properties
of the probability measure given by this theorem see.!?

Remark 1. The analogous statement of the Minlos theorem for the nuclear
space N replaced by the finite dimensional space R? is the well-known
Bochner theorem. Because of this, in the literature Theorem 1 is quite
often called the Bochner-Minlos theorem as well.

Consider now the following particular positive definite continuous func-
tion defined on N by

o) =exp (-3 161) . cew. 6

Then, by the Minlos theorem, we are given a (Gaussian) measure p on

(N',Cs(N")) defined by (4) and (5).

Definition 2. We call the probability space (N’,C,(N”), 1) the Gaussian
space associated with A and .

In particular, if N = S(R%) with the topology described in Example 1,
the space (S'(R%),C,(S'(R%)), ) is called white noise with d-dimensional
time parameter. If d = 1, we simply call it white noise.
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Definition 3. For short we set
(L?) := L*(N',Co(N"), )
for the complex L? space.

In applications of White Noise Analysis, the space (L?) plays an essen-
tial role. In order to distinguish clearly the inner product (-,-) and the
Hilbertian norm |- | on the real space H from those defined on the complex
space (L?), we shall denote the inner product on (L?) by ((+,-) and the
corresponding norm by || - ||. Furthermore, we shall assume that ((-,-) is
linear in the first factor and antilinear in the second one, that is,

(FuF) = [ R@R@ ), PR e (I,

where F5 is the complex conjugate function of Fj.

From the definition of the Gaussian measure u given by (4) and (5),
it follows straightforwardly that for every £ € N, (-,€) is a normally dis-
tributed random variable with variance |£[2. Thus, for all £ € N, £ # 0,

’LL2

+oo
16017 = [ (o7 dute) = oo [ "t ep (~5pp ) du= el

Moreover, again by (4) and (5), the real process X defined on N’ x A/
by X¢(z) = (,§) is centered Gaussian with covariance

/N’(:c,sﬁ(x,éz) dﬂ(ﬂf)=% (45 &0+ €)% = I €017 = 11, €2)11%) = (€1, &2)-

As we have mentioned above, in this book we shall mostly choose N to
be the Schwartz space S(R%), S4(R), or S(R) of test functions and H to be
L*(R%), L%(R), or L?(R), respectively. In all these cases, N is dense in H.
This is an assumption fixed on general N' and H from the very beginning.
Therefore, the above considerations allow an extension of the mapping

N3Em (.6 € (L?)
to a bounded linear operator
"> (f)eL?)
defined at each f € H by
- f) = (L) = lim- ),

where (£,)nen is any sequence in N converging to f in H. Moreover,

€, )l = [ f] for all f € H.
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Proposition 1 (**). The process X defined on N' x H by X (z) = (z, f)
is centered Gaussian with covariance

(o) = [ e due) = (fo), foe

In particular, for every f € H, (-, f) is normally distributed with vari-
ance |f|?. Thus, from its characteristic function we have

/N, exp (i(z, f)) dp(z) = exp <—% |f|2) ; (6)

which extends (4) and (5) to f € H.
More generally, for every n € Ny and every f € H, f # 0, we can derive
from the characteristic function (6),

2n _; e i u? (271) 2n
/N,<“”’f> W) = ip /_oo ¢ ep( 2lf|2) =
[ w0 du@) = 0
N'I

and, by the polarization identity,

/ (@, 1) (@, fn) du(c)

NI

=S 3 / (@, for + .+ F1,)" dp(z),
T k=1

17 e <

for every fi,...,fn € H,n € N.

Example 2. Coming back to the white noise space (S’(R),C,(S'(R)), ),
the previous proposition allows us to consider the Gaussian centered process
X with independent increments,

X]l[O.t) ((II) = <(E, ]1[O,t)>ﬂ t2 07

being 1l p the indicator function of a Borel set B C R. This process has
covariance

(¢ po,y), (5 Npo,s))) = (L6, Ljo,5)) = S AL,

and thus X is a one-dimensional Brownian motion starting at the origin at
time zero. We shall denote this Brownian motion by B and X Yk by B;
or B(t,-). Informally, note that

Bi(z) = (z,1g,1)) = /0 x(s) ds,
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which suggests considering z(t) as the time derivative of the Brownian
motion. Of course, this time derivative does not exist in a pointwise sense.
However, it exists as a distribution. From now on, we shall denote z(t)
by w; or w(t) and call it white noise. As an aside, let us mention that
this example is the connecting point for another direction inside infinite
dimensional analysis, the well-known Malliavin Calculus.3¢ For a clear
explanation about the relation between both infinite dimensional analyses
see e.g.16:38
Within the more general setting of the Gaussian space

(Sa(R),Co(S4(R)), 1), d > 1,

we can then introduce a d-dimensional Brownian motion B starting at the
origin at time zero by

Bi(wi, .. .,wq) == ({w1, Ljo,e)), - - - (W, Rog))) » (Wi,--.,wa) € Sg(R),t > 0.

3. Ito-Segal-Wiener Isomorphism

We verify from equalities above Example 2 that the important monomials
of the type

I =1, 1,
('7f1>"' ('afn) = <'®n’fl ® ®fn) = <‘®n7fl®”'®fn>7

do not verify an orthogonal relation. This fact is a reason for introducing
the orthogonalized so-called Wick-ordered polynomials, a class of functions
closely related to the orthogonal Hermite polynomials.

For each z € N7, let : 2®" :€ N"® n € Ny (Appendix A.1.3) be the
so-called Wick power of order n, inductively defined by

sl = 1,
l.— g,

2@ = 2% . @r — (n—1): 22" . QTy, n>2,

8

where Tr € N"®2 is given by

(rl‘r)él ®§2>:<617§2>5 517626/\/'
Thus, by induction, for all z € N’ and all £ € N we have

(3]
(o =Y (1) BECEOrEO™

k=0



White Noise Analysis: An Introduction 9

where the right-hand side is the so-called Hermite polynomial in (z, &) of
order n and parameter / (&, &) = |£|. We recall that given a constant o > 0,
the n-th Hermite polynomial in u € R with parameter o is defined by

u? '\ d" u?
1u™ 52 1= (—0)" exp (W) Jun &P (_W>

a\" u
= = Hn e
(%) = (%)
being H,, the Hermite polynomial of order n,

mn
H,(u) :=(—1)"exp (u2) L exp (—u2) =2":u":1, ueR,neN,.

: §
du™ 2

That is,

[£]

n n (2k)' 1 g n—2k
H,(u) =2 Z(Qk) 1ok (—§> u , u€R,neN.

k=0

Hence, for each n € Ny and every £ € NV, £ # 0, we have

b ™ 1 B = BT ¢ =(E) Hn<($,£)>,
in accordance with (7). Of course, by the polarization identity, (7) also
holds for € € Ng := {& + i€ : &1,& € N} with

<1‘a£1 +Z£2> = <Ia§1>+i<xa£2>v xEN17€I’§2€N7
meaning that for f € H or, more generally, for f € Hc,

<f7€1 +7/£2>=(f7§1)+7'(f7§2)7 §la€2€N'

Proposition 2. For all o™ € .N’éé" and all (™ € Ngm the following
orthogonal relation holds:

(¢ 2% 5,0, (: 22 1, 6)) = b mnl(™,6™). (8)

Proof. (Sketch) Since elements in N ®n n € No, are linear combinations
of elements of the form £€2" with £ € N, it is sufficient to prove (8) for (™),
™) of the form p™ = 2", ¢(™ = £2™, £1,& € N. In this case, the
proof follows from the orthogonality relation between Hermite polynomials,

+oo
Hp(u)Hp (u) exp (—u?) du = 6 mv/m2"nl,
—00
cf. e.g., 21439 As before, the general case can then be derived from the real
case by means of polarization identity. O
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Conversely, since each monomial u — u™, n € Ny can be written as lin-
ear combination of Hermite polynomials in u € R with any given parameter
o >0,

(3]

|
oS ) b, e
k=0 :

then, by the polarization identity, each monomial (-®" £%m) ¢ € Ng, can
be written as

(2]
n n\ __ n __ - (2k) n— S
(2", £8™) = (z,£) —kX_j_O (%) ook (6 (2,6 e g

0 o)
=3 (1) SR (6,05 220 g0, s e .
k=0 ’

Therefore, the linear space of the so-called smooth Wick-ordered poly-
nomials,

N
PWN') = {<I> (B(z) = Z( 2®" 1, M), o™ e NE",z e N',N € No}

n=0
coincides with the linear space

N
{<I> 1 ®(x) = Z(z‘x’",go(")),go(") eENE"zeN',N € No} .

n=0
In terms of (L?) properties, it turns out that P(N”) is dense in (L?).48
As a consequence, for any F € (L?) there is a sequence (f™) cn, in the
Fock space Exp(H¢) (Appendix A.1.2) such that
F= Z " f) 9)
and, moreover, by the orthogonahty property (Proposition 2),
oo 2 2
IFIE = Y nt| | = |l(£) :
; "€No llExp(#e)

And vice versa, any series of the form (9) with ( f("))n en, € Exp(Hc)
defines a function in (L?). In other words, the expansion (9) yields a uni-

tary isomorphism between the space (L?) and the symmetric Fock space
Exp(Hc).

Definition 4. We call this unitary isomorphism the It6-Segal-Wiener iso-
morphism. The expansion (9) with ( f("))n en, € Exp(Hc) is called the
It6-Segal-Wiener chaos decomposition or simply the chaos decomposition
of F € (L?) and f(™ n € Ny, the kernels of F.



