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Foreword

Transmission of information is at the heart of what we call communication.
As an area of concern it is so vast as to touch upon the preoccupations of
philosophers and to give rise to a thriving technology.

We owe to the genius of Claude Shannon* the recognition that a large class
of problems related to encoding, transmitting, and decoding information can
be approached in a systematic and disciplined way: his classic paper of 1948
marks the birth of a new chapter of Mathematics.

In the past thirty years there has grown a staggering literature in this
fledgling field, and some of its terminology even has become part of our daily
language.

The present monograph (actually two monographs in one) is an excellent
introduction to the two aspects of communication: coding and transmission.

The first (which is the subject of Part two) is an elegant illustration of the
power and beauty of Algebra; the second belongs to Probability Theory which
the chapter begun by Shannon enriched in novel and unexpected ways.

MARK Kac
General Editor, Section on Probability

* C. E. Shannon, A Mathematical Theory of Communication, Bell System Tech. J. 27 (1948),
Introduction: 379-382; Part one: Discrete Noiseless Systems, 382—405; Part two: The Discrete
Channel with Noise (and Appendixes), 406—-423; Part III: Mathematical Preliminaries, 623—636;
Part IV: The Continuous Channel (and Appendixes), 637-656).
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Preface to the first edition

This book is meant to be a self-contained introduction to the basic results in
the theory of information and coding. It was written during 1972-1976, when
I taught this subject at Caltech. About half my students were electrical
engineering graduate students; the others were majoring in all sorts of other
fields (mathematics, physics, biology, even one English major!). As a result
the course was aimed at nonspecialists as well as specialists, and so is this
book.

The book is in three parts: Introduction, Part one (Information Theory), and
Part two (Coding Theory). It is essential to read the introduction first, because
it gives an overview of the whole subject. In Part one, Chapter 1 is
fundamental, but it is probably a mistake to read it first, since it is really just a
collection of technical results about entropy, mutual information, and so forth.
It is better regarded as a reference section, and should be consulted as
necessary to understand Chapters 2—5. Chapter 6 is a survey of advanced
results, and can be read independently. In Part two, Chapter 7 is basic and
must be read before Chapters 8 and 9; but Chapter 10 is almost, and Chapter
11 is completely, independent from Chapter 7. Chapter 12 is another survey
chapter independent of everything else.

The problems at the end of the chapters are very important. They contain
verification of many omitted details, as well as many important results not
mentioned in the text. It is a good idea to at least read the problems.

There are four appendices. Appendix A gives a brief survey of probability
theory, essential for Part one. Appendix B discusses convex functions and
Jensen’s inequality. Appeals to Jensen’s inequality are frequent in Part one,
and the reader unfamiliar with it should read Appendix B at the first
opportunity. Appendix C sketches the main results about finite fields needed
in Chapter 9. Appendix D describes an algorithm for counting paths in
directed graphs which is needed in Chapter 10.

vii



viii Preface

A word about cross-references is in order: sections, figures, examples,
theorems, equations, and problems are numbered consecutively by chapters,
using double numeration. Thus “Section 2.3,” “Theorem 3.4,” and “Prob.
4.17” refer to section 3 of Chapter 2, Theorem 4 of Chapter 3, and Problem
17 of Chapter 4, respectively. The appendices are referred to by letter; thus
“Equation (B.4)” refers to the fourth numbered equation in Appendix B.

The following special symbols perhaps need explanation: “[J” signals the
end of a proof or example; “iff” means if and only if, | x| denotes the largest
integer < x; and [x]| denotes the smallest integer = x.

Finally, I am happy to acknowledge my debts: To Gus Solomon, for
introducing me to the subject in the first place; to John Pierce, for giving me
the opportunity to teach at Caltech; to Gian-Carlo Rota, for encouraging me
to write this book; to Len Baumert, Stan Butman, Gene Rodemich, and
Howard Rumsey, for letting me pick their brains; to Jim Lesh and Jerry
Heller, for supplying data for Figures 6.7 and 12.2; to Bob Hall, for drafting
the figures; to my typists, Ruth Stratton, Lillian Johnson, and especially Dian
Rapchak; and to Ruth Flohn for copy editing.

ROBERT J. MCELIECE



Preface to the second edition

The main changes in this edition are in Part two. The old Chapter 8 (“BCH,
Goppa, and Related Codes”) has been revised and expanded into two new
chapters, numbered 8 and 9. The old chapters 9, 10, and 11 have then been
renumbered 10, 11, and 12. The new Chapter 8 (“Cyclic codes”) presents a
fairly complete treatment of the mathematical theory of cyclic codes, and
their implementation with shift register circuits. It culminates with a dis-
cussion of the use of cyclic codes in burst error correction. The new Chapter 9
(“BCH, Reed-Solomon, and Related Codes”) is much like the old Chapter 8,
except that increased emphasis has been placed on Reed-Solomon codes,
reflecting their importance in practice. Both of the new chapters feature
dozens of new problems.

1X
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Introduction

In 1948, in the introduction to his classic paper, “A mathematical theory of
. . *
communication,” Claude Shannon! wrote:

“The fundamental problem of communication is that of reproducing at one
point either exactly or approximately a message selected at another point.”

To solve that problem he created, in the pages that followed, a completely new
branch of applied mathematics, which is today called information theory and/
or coding theory. This book’s object is the presentation of the main results of
this theory as they stand 30 years later.

In this introductory chapter we illustrate the central ideas of information
theory by means of a specific pair of mathematical models, the binary
symmetric source and the binary symmetric channel.

The binary symmetric source (the source, for short) is an object which
emits one of two possible symbols, which we take to be “0” and “1,” at a rate
of R symbols per unit of time. We shall call these symbols bifs, an abbrevia-
tion of binary digits. The bits emitted by the source are random, and a “0” is
as likely to be emitted as a “1.” We imagine that the source rate R is
continuously variable, that is, R can assume any nonnegative value.

The binary symmetric channel (the BSC? for short) is an object through
which it is possible to transmit one bit per unit of time. However, the channel
is not completely reliable: there is a fixed probability p (called the raw bit
error probability®), 0 < p <1, that the output bit will not be the same as the
input bit.

We now imagine two individuals, the sender and the receiver. The sender
must try to convey to the receiver as accurately as possible the source output,

* Notes, denoted by superior numerals, appear at the end of most chapters.



2 Introduction

and the only communication link allowed between the two is the BSC
described above. (However, we will allow the sender and receiver to get
together before the source is turned on, so that each will know the nature of
the data-processing strategies the other will be using.) We assume that both
the sender and receiver have access to unlimited amounts of computing power,
storage capacity, government funds, and other resources.

We now ask, For a given source rate R, how accurately can the sender
communicate with the receiver over the BSC? We shall eventually give a very
precise general answer to this question, but let’s begin by considering some
special cases.

Suppose R = 1/3. This means that the channel can transmit bits three times
as fast as the source produces them, so the source output can be encoded
before transmission by repeating each bit three times. For example, if the
source’s first five bits were 10100, the encoded stream would be
111000111000000. The receiver will get three versions of each source bit, but
because of the channel “noise” these versions may not all be the same. If the
channel garbled the second, fifth, sixth, twelfth, and thirteenth transmitted
bits, the receiver would receive 101011111001100. A little thought should
convince you that in this situation the receiver’s best strategy for decoding a
given source bit is to take the majority vote of the three versions of it. In our
example he would decode the received message as 11100, and would make an
error in the second bit. In general, a source bit will be received in error if
either two or three of its three copies are garbled by the channel. Thus, if P,
denotes the bit error probability,

P, = P {2 channel errors} + P {3 channel errors}

=3p’(1- p) +p

=3p? - 2p°. (0.1)

Since p = %, this is less than the raw bit error probability p; our simple
coding scheme has improved the channel’s reliability, and for very small p the
relative improvement is dramatic.

It is now easy to see that even higher reliability can be achieved by
repeating each bit more times. Thus, if R = 1/(2n + 1) for some integer n,
we could repeat each bit 27 + 1 times before transmission (see Prob. 0.2) and
use majority-vote decoding as before. It is simple to obtain a formula for the
resulting bit error probability P2"+D:
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2n+1
pemth = Z P {k channel errors out of 2n + 1 transmitted bits}
k=n+1
— ™ (2" + l)pk(l _ p)2n+l—k
k=n+1 k
2n + 1 .
= ( n-:_l )p"+1 + terms of higher degree in p. 0.2)
n

If n> 1, this approaches 0 much more rapidly as p — 0 than the special case
n = 1 considered above.* So in this rather weak sense the longer repetition
schemes are more powerful than the shorter ones. However, we would like to
make the stronger assertion that, for a fixed BSC with a fixed raw error
probability p <1, P@"*D — 0 as n — oo, that is, by means of these repeti-
tion schemes the channel can be made as reliable as desired. It is possible but
not easy to do this by studying formula (0.2) for P?"+D. We shall use another
approach and invoke the weak law of large numbers,* which implies that, if
N bits are transmitted over the channel, then for any £ >0

lim P{
N—oo

In other words, for large N, the fraction of bits received in error is unlikely to

differ substantially from p. Thus we can make the following estimate of
P(82n+1):

(0.3)

number of channel errors
i —p|>ep=0.

POmD — P{fraction of transmitted bits received in error

n+1 1 1
= = -4 —
2n+1 2 4n+42

< P{fraction >1}
< P{[fraction — p| >1 - p},

and so by (0.3) P@"*D does approach 0 as n — oo. We have thus reached the
conclusion that if R is very small, it is possible to make the overall error
probability very small as well, even though the channel itself is quite noisy.
This is of course not particularly surprising.

* Discussed in Appendix A.
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So much, temporarily, for rates less than 1. What about rates larger than 1?
How accurately can we communicate under those circumstances?

If R>1, we could, for example, merely transmit the fraction 1/R of the
source bits and require the receiver to guess the rest of the bits, say by flipping
an unbiased coin. For this not-very-bright scheme it is easy to calculate that
the resulting bit error probability would be

1 R—1_1
= — X — X —
Pe=gxpt—F—%3
=1-({-p)/R 0.4

Another, less uninspired method which works for some values of R > 1 will
be illustrated for R = 3. If R = 3 there is time to transmit only one third of
the bits emitted by the source over the channel. So the sender divides the
source bits into blocks of three and transmits only the majority-vote of the
three. For example if the source emits 101110101000101, the sender will
transmit 11101 over the channel. The receiver merely triples each received
bit. In the present case if the channel garbled the second transmitted bit he
would receive 10101, which he would expand to 11100011100011 1, thereby
making five bit errors. In general, the resulting bit error probability turns out
to be

Po=3X(1-p)+3Xp
=1+ p/2. (0.5)

Notice that this is less than %-}- p/3, which is what our primitive “coin-
flipping” strategy gives for R = 3. The generalization of this strategy to other
integral values of R is left as an exercise (see Prob. 0.4).

The schemes we have considered so far have been trivial, though perhaps
not completely uninteresting. Let us now give an example which is much less
trivial and in fact was unknown before 1948.

We assume now that R = 4/7, so that for every four bits emitted by the
source there is just time to send three extra bits over the channel. We choose
these extra bits very carefully: if the four source bits are denoted by xo, x1, X7,
x3, then the extra or redundant or parity-check bits, labeled X4, X5, Xg, are
determined by the equations

X3 =x1+x+x3 (mod2),
Xs = xp+x2 +x3 (mod2), (0.6)

X6 =Xp+x; +x3 (mod2).
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Thus, for example, if (x, xj, x2, x3) = (0110), then (x4, x5, x6) = (011), and
the complete seven-bit codeword which would be sent over the channel is
0110011.

To describe how the receiver makes his estimate of the four source bits
from a garbled seven-bit codeword, that is, to describe his decoding algorithm,
let us rewrite the parity-check equations (0.6) in the following way:

Xt +XxX2+x3+ x4 =0,
X0 +x +x3 + X5 = 0,
xp + x1 + x3 + x¢ = 0. 0.7)

(In (0.7) it is to be understood that the arithmetic is modulo 2.) Stated in a
slightly different way, if the binary matrix H is defined by

01 11100
H=11 011 01 0},
1 101 0 0 1

we see that each of the 16 possible codewords x = (xo, X1, X3, X3, X4, X5, Xg)
satisfies the matrix-vector equation

Hx" = (0.8)

SO O

(In (0.8) the superscript 7 means “transpose.”)
It turns out to be fruitful to imagine that the BSC adds (mod 2) either a 0 or
a 1 to each transmitted bit, 0 if the bit is not received in error and 1 if it is.

Thus if x=(x, X1, ..., %) is transmitted, the received vector is
Yy = (xo +z0, X1 + 21, ..., X6 + z5), Where z; = 1 if the channel caused an
error in the ith coordinate and z; = 0 if not. Thus, if z = (2, ..., z¢) denotes

the error pattern, theny = x + z.
The receiver, who knows only y but wants to know x, now does a very
clever thing: he computes the following vector s = (so, s1, 52):

sT = HyT
= H(x+1z)7
= Hx” + Hz"
= Hz"  (see (0.8)). (0.9)

Here s is called the syndrome® of y; a 0 component in the syndrome indicates
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that the corresponding parity-check equation is satisfied by y, a 1 indicates
that it is not. According to (0.9), the syndrome does not depend on which
codeword was sent, but only on the error pattern z. However, since X =y + z,
if the receiver can find z he will know x as well, and so he focuses on the
problem of finding z. The equation s” = Hz” shows that s” is the (binary)
sum of those columns of H corresponding to 1’s in z, that is, corresponding to
the bits of the codeword that were garbled by the channel:

0 1 0
sT=zo| 1|+ [0+ - +2z]|0]. (0.10)
1 1 1

The receiver’s task, once he has computed s, is to “solve” the equation
s’ = Hz" for z. Unfortunately, this is only three equations in seven un-
knowns, and for any s there will always be 16 possibilities for z. This is
clearly progress, since there were a priori 128 possibilities for z, but how can
the receiver choose among the remaining 16? For example, suppose
y =(0111001) was received. Then s = (101), and the 16 candidate z’s turn
out to be:

01 00 0O0O 0010011
1 1.0 0 0 1 1 0001010
00 001 01 01 110 01
0110110 1 01 0 0 00
601 01 1 11 1 001 0 01
1 000 110 1 111010
11101 01 0011100
1 101100 1 01 1111

Faced with this set of possible error patterns, it is fairly obvious what to do:
since the raw bit error probability p is <%, the fewer 1’s (errors) in an error
pattern, the more likely it is to have been the actual error pattern. In the
current example, we’re lucky: there is a unique error pattern (0100000) of
least weight, the weight being the number of 1%. So in this case the receiver’s
best estimate of z (based both on the syndrome and on the channel statistics)
is z=(0100000); the estimate of the transmitted codeword is
X =y+2z=(0011001); and finally, the estimate of the four source bits is
(0011).

Of course we weren’t really lucky in the above example, since we can show
that for any syndrome s there will always be a unique solution to Hz” = s of
weight 0 or 1. To see this, notice that if s = (000), then z = (0000000) is the
desired solution. But if s # (000), then s” must occur as one of the columns



