FUNDAMENTALS
OF COMPUTING II

'."-\"_‘ * \\ . C++ Edition

Allen B.Tucker
Robert D. Cupper
W. James Bradley

Richard G. Epstein
Charles F. Kelemen

C++ EDITION

FUNDAMENTALS
OF COMPUTING 1l

Abstraction, Data Structures,
and Large Software Systems

Allen B. Tucker

Bowdoin College

Robert D. Cupper

Allegheny College

W. James Bradley

Calvin College

Richard G. Epstein

West Chester University

Charles F. Kelemen

Swarthmore College

McGRAW-HILL, INC.

New York St. Louis San Francisco Auckland Bogotd Caracas
Lisbon London Madrid Mexico City Milan Montreal New Delhi
San Juan Singapore Sydney Tokyo Toronto

FUNDAMENTALS OF COMPUTING 11
Abstraction, Data Structures, and Large Software Systems,
C++ Edition

Copyright © 1995 by McGraw-Hill, Inc. All rights reserved.
Printed in the United States of America. Except as pemitted
under the United States Copyright Act of 1976, no part of this
publication may be reproduced or distributed in any form or by
any means, or stored in a data base or retrieval system, without

the prior written permission of the publisher.

This book is printed on recycled, acid-free
paper containing 10% postconsumer waste .

234567890 FGRFGR 9098765
ISBN 0-07-065502-2

The editor was Eric M. Munson;
the production supervisor was Paula Flores.
Quebecor Printing/Fairfield was printer and binder.

Library of Congress Catalog Card Number: 94-79884

ABOUT THE AUTHORS

Allen B. Tucker is Professor of Computer Science at Bowdoin College; he has
held similar positions at Colgate and Georgetown Universities. He earned a
BA in mathematics from Wesleyan University and an MS and PhD in computer
science from Northwestern University. Professor Tucker is the author or coau-
thor of several books and articles in the areas of programming languages, natu-
ral language processing, and computer science education. He recently served
on the ACM Task Force on the Core of Computing and as cochair of the ACM/
IEEE-CS Joint Curriculum Task Force that developed the report Computing
Curricula 1991. He is a member of ACM, IEEE-CS, CPSR, and the Liberal
Arts Computer Science Consortium (LLACS).

Robert D. Cupper is Professor and Chair of the Department of Computer Sci-
ence at Allegheny College. He received a BS from Juniata College and a PhD
from the University of Pittsburgh. At Allegheny, Professor Cupper developed
one of the first computer science major programs for a liberal arts college, a
program that helped motivate the design of the liberal arts model curriculum.
He has been an active member of ACM for several years, having served as
chair of the Student Chapters Committee and as secretary-treasurer of the Spe-
cial Interest Group on Computer Science Education (SIGCSE). Professor Cup-
per has written and spoken on the economics of computing, curriculum
development, and accreditation. He is a member of ACM and a cofounder of
LACS.

W. James Bradley is Professor of Mathematics and Computer Science at Calvin
College. He graduated from MIT with a major in mathematics and completed
a PhD in mathematics from the University of Rochester. Professor Bradley
also earned an MS in computer science from the Rochester Institute of
Technology. He has authored papers in game theory and computer science cur-
riculum, as well as an introductory text in discrete mathematics. His current
scholarly interests are in formal methods in decision making, database systems,
ethical and social issues in computing, and computer science education. Pro-
fessor Bradley is a member of MAA, ACM, CPSR, and LACS.

Richard G. Epstein is Professor of Computer Science at West Chester Universi-
ty. He earned a BA in physics at George Washington University and a PhD in
computer science at Temple University. He has research interests in the areas
of programming languages, object-oriented databases, and curriculum design.
He recently served on the ACM/IEEE-CS Joint Curriculum Task Force that de-

vi

veloped the report Computing Curricula 1991. Professor Epstein is a member
of ACM and IEEE-CS.

Charles F. Kelemen is Professor of Computer Science and Mathematics and Di-
rector of the Computer Science Program at Swarthmore College. He earned a
BA from Valparaiso University and a PhD in Mathematics from the Pennsylva-
nia State University. He has held faculty positions at Ithaca College and
LeMoyne College and was Visiting Associate Professor of Computer Science
at Cornell. He has published research and educational articles in both mathe-
matics and computer science. His research interests are algorithms and the
theory of computation. He holds the Certificate in Computer Programming
(Systems Programming) from the Institute for Certification of Computer Pro-
fessionals. He is a member of ACM, IEEE-CS, CPSR, MAA, and LACS.

Dedicated

Allen B. Tucker: To my wife Meg
Robert D. Cupper: To my wife, Sandy
W. James Bradley: To my wife, Hope
Richard G. Epstein: To my father, David

Charles F. Kelemen: To my wife Sylvia

PREFACE

The discipline of computer science and engineering, or computing, is an ex-
traordinary one. More than any other field of study or professional engage-
ment, the process of solving computational problems and designing
computational devices continues to evolve with relentless speed. And so must
the curriculum that prepares students to confront the challenges of this unusual
discipline.

This text, together with its accompanying laboratory manual and software,
is designed for the second course in computing (CS2), which has traditionally
confined itself to the study of data structures. Here, we broaden the study of
data structures by adding the relevant theory (computational complexity and
correctness), modernizing the software design process (using C++ and object-
oriented methods), and focusing on the functional elements of operating sys-
tems as a compelling application for the study of data structures. The social
issue of software reliability is also examined to complete this text. Thus, stu-
dents who use this text and its laboratory materials will come away not only
with an appreciation for the fundamental data structures of computer science
but also some strong ideas about their underlying theory, their applications,
and the impact of their use on the software systems that they effectively serve.

Overview of This Text

This text has ten chapters and is organized for use in a one-semester course
with an accompanying laboratory component. The accompanying Laboratory
Manual and software are designed to complement the text, so that they should
be used in tandem with it. The coordination of laboratory exercises will enrich
the textual material that is covered in the lectures.

Chapter O reviews important fundamental concepts of programming from
the first course. The accompanying Chapter 0 in the laboratory manual con-
tains a C++ tutorial and elementary exercises which can be used by students
who are familiar with another language (e.g., Pascal) to gain equivalent famil-
iarity with the elements of C++ that they would encounter in a first course.
Students who have already studied C++ in their first course may skip this
Chapter altogether. That choice will give students more time to work with oth-
er aspects of the course.

Chapter 1 provides a detailed introduction to object-oriented software de-
sign. It illustrates the basic ideas of class and method by solving a simple pro-
gramming problem using the object-oriented paradigm. The object-oriented

Xv

xvi

FUNDAMENTALS OF COMPUTING Il

design features of C++ that appear in this chapter are introduced in the accom-
panying Chapter 1 of the Laboratory Manual.

Chapter 2 continues this train of discussion, introducing the use of dynamic
objects, virtual methods, inheritance, polymorphism, and a basic class called
Element that will be used throughout the remainder of the text. Chapter 2 in
the Laboratory Manual introduces these features as they appear in the C++ lan-
guage. Because Chapter 2 is a rather long chapter, instructors are encouraged
to be selective in its coverage. Sections that are more or less optional are
flagged in the table of contents with an asterisk (*). (In fact, optional sections
in all chapters are flagged in this way, so that students can remain focussed on
the more central issues in the course.)

Chapter 3 focuses on the problem of measuring and classifying the efficien-
cy of algorithms by introducing the notion of computational complexity. It
treats the correctness and complexity of various classical sorting and searching
algorithms. We recommend that, among these algorithms, students cover at
least one O(n log n) sorting algorithm alongside a conventional O(n?) algo-
rithm in order to gain an appreciation of the importance of efficiency when
making choices among alternatives in algorithm design. Chapter 3 is indepen-
dent from Chapter 2. It can be covered immediately after Chapter 1 or topics
from Chapter 3 can be intermixed with topics from Chapter 2.

Chapters 4 and 5 develop six fundamental data structures in computer sci-
ence—stacks, queues, lists, binary trees, trees, and graphs—and their applica-
tions. Each of these is characterized as a class, and its fundamental operators
are identified as the methods of that class. In Chapter 4, applications of stacks
are illustrated through the classical problem of evaluating Polish expressions,
while applications of queues are explored through the simulation of a waiting
line in a bank. There, too, the notion of pseudorandom number generation, so
fundamental in the design of computer simulations, is introduced and dis-
cussed.

Binary trees, general trees, and graphs are introduced in Chapter 5. The
BinaryTree class is considered as a restriction of the general Tree class, thus
giving an important application of the idea of inheritance. The discussion of
trees ends with an overview of compilers and the use of the tree class in the
design of an expression parser.

Chapter 6 concentrates on the implementation issues that surround these six
classes, including tradeoffs in time and space (computational complexity
again) between linked and array representations. Chapter 6 in the Laboratory
Manual contains additional tutorial material on the use of pointers to build
linked structures that implement the various classes discussed in Chapters 4
and 5. This organization allows instructors to treat the six classes developed in
Chapters 4 and S as abstract data types, putting off all implementation details
until Chapter 6. Alternatively, it is possible to introduce a class from Chapter 4
or 5 and immediately consider its implementation details from Chapter 6 be-
fore going on to another abstract data type.

PREFACE xvii

Chapter 7 draws together the study of object-oriented design and data struc-
tures into a single important computer science application—the design of an
operating system. Operating systems is a fundamental subject area of comput-
er science, but it 1s not normally studied until much later in a more traditional
curriculum. However, this chapter combines an overview of operating systems
with a detailed discussion of key operating system components, providing stu-
dents with a capstone object-oriented design experience. The tree structure of a
UNIX or PC/DOS directory system can be modeled and explored easily using
the Tree class. The scheduling of memory and processes is also studied in
detail. Students can exercise these operating system applications by running
the simulations provided in the software and completing the work in Chapter 7
of the Laboratory Manual.

Chapter 8 broadens the study of software design by providing a complete
overview of the process of software engineering. It contrasts the principles of
object-oriented design, used in this text, with the traditional process of func-
tion-oriented design. It also introduces software management, testing meth-
ods, and the user interface. Thus, it provides a valuable prelude to an
intermediate or advanced software engineering course that may appear later in
the curriculum.

Chapter 9 discusses three different social dimensions of software design—
the dynamics of software teams, the idea of software as property, and the reli-
ability of large software systems. Students have an opportunity here to grapple
with important issues that uniquely confront computer scientists and engineers.
For instance, how is a large software project organized and managed? What
are the risks and liabilities when a complex software system fails? Who owns
a software product, and what are the rights and responsibilities of such owner-
ship?

Unless students have had a thorough introduction to C++ in advance, this
text provides more material than can be covered in a single semester. Below,
we outline different alternative “routes” through this text and lab manual, de-
pending on different student backgrounds and course goals.

Student Audience, Goals, and Alternative Course Organizations

This text assumes that students have already had a first course in computer sci-
ence, using either Volume I in this series or another introductory text. In either
case, we expect that students have had a one—semester introduction to pro-
gramming and problem solving, in either C++ or another contemporary lan-
guage (Pascal or Scheme, for instance). We also expect that students will have
taken a college level course in discrete mathematics or calculus (or both), ei-
ther in advance or in parallel with this course. The mathematical discussions
are interwoven into this text so that students can see the interplay of mathemat-
ics with the study of complexity, correctness, data structures, simulation, and
operating systems.

xviii

FUNDAMENTALS OF COMPUTING §i

Depending on whether students have had a first course in C++ or a first
course in another language, we recommend that one of two alternative “routes”
through this text be followed in a one—semester (14—week) course. Route 1 is
designed for students who have already had an introduction to C++ program-
ming, while Route 2 is design for students who have not used C++ but have
had an introduction to programming in another language.

Text/Lab Route 1 Route 2
Chapter Topics Weeks Weeks
0 C++ tutorial; programs, functions, input/ 1-2
output, arithmetic, specifications (pre~
and postconditions)
l Software design; classes, objects, and 3—4 1-2
methods
2 Generics, inheritance, polymorphism; 5-6 34
class libraries and software reuse
3 Complexity, search, and sort; empirical 7-8 5-6
evaluation of sorting
4 Stack and queue classes and their methods; 9 7
the list class and its basic methods; random
number generation, simulation, Polish ex-
pressions
5 Trees, binary trees, and graphs; properties 10 8-9
and applications
6 Implementation of data structures; linked 11-12 10-11
vs array strategies, complexity issues; C++
pointers and dynamic storage management
7 Operating systems and software design; 13 12-13
process management, queueing, tree struc-
tured directories
8 Overview of software engineering 14
9 Social issues; software reliability 14

As indicated, Route 1 requires two weeks at the beginning of the semester to
bring students up to speed with C++ (Chapter O in the Laboratory Manual
should be particularly helpful in this regard). This time therefore compromises
both the breadth and the depth with which data structures and their applications
can be covered later in the semester. A more ideal schedule is reflected in

PREFACE Xix

Route 2, which assumes that students are familiar with the rudiments of C++
and can move directly into the object-oriented design aspects of the language.
Route 2 provides the luxury of two full weeks’ study of trees and graphs and
two full weeks’ study of operating system applications of data structures.

Other routes through this text are certainly feasible, depending on the
instructor’s preferences and the course’s goals. For instance, our rather brief
suggested treatment of stacks and queues (1 week) realistically allows only
stacks or queues to be studied in reasonable depth; some may prefer to allocate
two weeks for these topics. Courses that wish to emphasize techniques for
analysis of algorithms and verification could do all of Chapter 3 immediately
after Chapter 1. Different analysis techniques are illustrated in the analyses of
the various algorithms presented in Chapter 3. After Chapter 3, the unstarred
sections of Chapter 2 could be presented followed by all the material in Chap-
ters 4,5, and 6. Courses that wish to emphasize object-oriented programming
should do all of Chapter 2 and could skip Chapter 3 or just cover a favorite
sort. However, to incorporate a reasonable level of breadth into this course, we
recommend that at least two weeks be spent working with the material inChap-
ters 7-9 of the text.

Coordination of Laboratory Work

Whether Route 1 or Route 2 is taken through the text, the laboratory material
should be coordinated with the text on a week-by-week basis. Each chapter in
the Laboratory Manual contains detailed descriptions (including program list-
ings in the chapter appendices) of the C++ classes and programs discussed in
the corresponding chapter of text; students should frequently reference these
details as they read each chapter in the text.

The next page shows a typical laboratory schedule that can be followed for
either Route 1 or Route 2. Each lab listed on the right can be done in a week’s
time, except for the team projects which may require more time.

The laboratory exercises are accompanied by a complete set of software—
programs, classes, and data files—to facilitate student laboratory work. This
software is on a diskette distributed with the Instructors Manual. 1t may also
be obtained directly by sending e-mail to allen@polar.bowdoin.edu.

The Breadth-First Approach: The Fundamentals of Computing Series

Readers may know that the course for which this text has been developed is the
second in a collection of courses proposed in Computing Curricula 1991 [2]
and labeled as the “breadth-first” curriculum. The general goal of these
courses is to provide a broad view of the wide range of subjects in the disci-
pline of computing, an integration of theory with the practice of computing,
and a rigorously defined laboratory component. We hope to achieve a curricu-
lum that has much the same goals and style as a two- or three-semester
introduction to another science, such as chemistry or biology.

Xx FUNDAMENTALS OF COMPUTING Il

Text/Lab
Chapter Topic Lab assignment(s)
0 C++ tutorial Congressional PAC money
The gradebook problem
1 Classes and objects Using the weatherObs class
Implementing a class
2 Inheritance and polymorph- Element classes
ism Dynamic objects
3 Searching and sorting Serial vs binary search
Team project—empirical evalua-
tton of sorting algorithms
4 Stacks, queues, and lists Development of a linked queue
application
Comparison of random number
generators
5 Trees and binary trees Team project—linked binary tree
implementation
Binary search trees
6 Implementation issues Comparison of linked and array
implementations of lists
7 Operating systems Team project—operating system
simulation or job scheduler
8 Software engineering Short (3-5 page) paper on software
teams
9 Software reliability Short (3—5 page) paper on software
reliability

This text is therefore the second in a series of texts that are being developed
to support the breadth-first approach for the first four courses in the introduc-
tory curriculum. At this writing, the first text in this series is also available (in
both Pascal and C++ editions) and a Pascal edition of this text is also available.
The third and fourth texts are planned for development over the next two or
three years. The titles of these texts, which are collectively called the Funda-
mentals of Computing Series, are as follows:

Volume I: Logic, Problem Solving, Programs, and Computers
Volume II: Abstraction, Data Structures, and Large Software Systems

PREFACE xxi

Volume I1I: Levels of Architecture, Languages, and Applications
Volume 1V: Algorithms, Concurrency, and the Limits of Computation

The prerequisite structure assumed here is similar to that which is followed by
these courses’ counterparts in a traditional curriculum. That is, the course us-
ing Volume I is a prerequisite for all others, and the course using Volume II is a
prerequisite for the course using Volume 1V.

Any of these texts can be used interchangeably with any alternative text for
any of the first four courses in the curriculum. For instance, this text can be
used in the second course and some alternative for Volume III can be used in a
more traditionally oriented computer organization course, or vice versa. We
have already given some advice on how this text can be used by students
whose first course used Pascal or whose first course used a different approach
than the breadth-first approach in Volume I. In short, the Fundamentals of
Computing Series is a “loosely coupled” collection of teaching materials de-
signed to cover one or more of the first four courses in the computer science
curriculum, and in a wide range of institutional settings.

Acknowledgments

References

This work results from the toil, suggestions, and support of many people—too
numerous to mention individually. Since this text represents a fundamentally
new approach to teaching a second course in computer science, we cannot
overstate the importance of the feedback we have received from our students
and colleagues who have worked through the class testing with us.

In particular, we acknowledge the work of the following reviewers for their
contributions to this development and revision process: Art Farley (University
of Oregon), Ralph Morelli (Trinity College), Patricia Pineo (Allegheny Col-
lege), William Punch (Michigan State University), Stephen E. Reichenbach
(University of Nebraska), and Antonio Siochi (Christopher Newport Universi-
ty). They have provided immeasurable help in what has been a significant
task, and we thank them sincerely.

Allen B. Tucker, Robert D. Cupper, W. James Bradley,
Richard G. Epstein, Charles F. Kelemen

(1] P.Denning, D. Comer, D. Gries, M. Mulder, A. Tucker, A. Turner, and
P. Young, “Computing as a Discipline,” Report of the ACM Task Force
on the Core of Computer Science, ACM, New York, 1988. Reprinted
in Communications of the ACM (January 1989) and Computer (March
1989).

[2] A. Tucker (ed), B. Barnes, R. Aiken, K. Barker, K. Bruce, J. Cain, S.
Conry, G. Engel, R. Epstein, D. Lidtke, M. Mulder, J. Rogers, E. Spaf-

xxii

FUNDAMENTALS OF COMPUTING Il

(3]
[4]

ford, and A. Turner, Computing Curricula 1991, ACM/IEEE-CS Joint
Curriculum Task Force, ACM and IEEE-CS Press, New York, 1991.
A. Tucker and D. Garick, “A Breadth-First Introductory Curriculum
in Computing,” Computer Science Education 3 (1991), 271-295.

A. Tucker, A. Bemnat, J. Bradley, R. Cupper, and G. Scragg, Funda-
mentals of Computing I: Logic, Problem Solving, Programs, and Com-
puters; Pascal and C++ editions, McGraw-Hill (1994 and 1995).

CONTENTS

PREFACE Xv
CHAPTER 0 THE CRAFT OF PROGRAMMING 1
SIX PRINCIPLES FOR PROGRAMDESIGN 1
USING THESE PRINCIPLES IN PROGRAMDESIGN 4
EXERCISES 7
APPLICATION—THE SEARCHERPROBLEM 8
Using A Design Methodology: MAPS 10
Using Diagrams in Designing Solutions 11
EBXERCISE .. 15
A FORMAL SPECIFICATION LANGUAGE 15
Specifying the State of the Computation 16
Specitying the Processingof Input 17
Specifying the Generation of Qutput 19
More Examples Using Quantifiers and Informal Assertions 20
Repeating Groups of Data Items within Streams 22
EXERCISES ... 23
THE searcher PROGRAM WITH COMMENTARY 24
External definitions and declarations 25
The functionmain 27
The function give_instructionsccueiiinn i iin, 28
The function get_class_dataouuvunenemnenn ., 28
The function get_student_datacoonveernninn. . 30
The function compute_averagecouuueiuiiinn . 31
The function sort_by_name ..., 31
The function process_requestscc.uuriiiirrniii.. 33
The function search, 35
The function read_string 36
AREVIEWOFRECURSION i 37
EXERCISES 41
SUMMARY . .. 41
CHAPTER 1 SOFTWARE DEVELOPMENT WITH
OBJECTS 43
WHAT IS SOFTWARE METHODOLOGY? . ..o 43
EXERCISES 45
The Ideal of “Goodness™ 00 45
EXERCISES 48

X

FUNDAMENTALS OF COMPUTING li: G++ EDITION

The Software Crisisuoni it it ee e
SOFTWAREMODELS e e
The Software LifecycleModel

The Prototyping
EXERCISES

Object-Oriented

Model o e

Programming Languages

An Object-Oriented Design Methodology

Classes, Objects
EXERCISES

,andMethods inCH++

The Functions main and give_instructions
The Function PIOCESS_TeQUESES ..ottt e,
The student .hHeaderFile
The student.cxx ImplementationFile
The section.hHeaderFile0,
The section.cxx ImplementationFile
OBJECT-ORIENTED PROGRAMMING AND THE SIX DESIGN

PRINCIPLES

CHAPTER 2 INHERITANCE, POLYMORPHISM

AND GENERIC CLASSES
GENERIC AND HETEROGENEQUS DATA STRUCTURES
THE Element CLASS oo

HETEROGENEOUS DATA STRUCTURES AND TRUE POLYMORPHISM

EXERCISES

Designing the Personset Class
Implementing the Personset Class

EXERCISES

...

49
50
50
52
53
53
54
54
57
64
65
65
68
69
70
73
74

80
82
83
84

85
85
86
94
94

101
102

106

107

110

112

124

127

133
135
155
155
155
157
161
162
166

CONTENTS

OBJECT-ORIENTED DESIGN AND SOFTWAREREUSE
SUMMARY ... e

CHAPTER 3 COMPLEXITY, SEARCHING, AND SORTING
INTRODUCTION TO COMPLEXITYcoiiiiiiiiiiiinnnn..

EXERCISES

SEARCHING e e

Hashing e

SORTING e e e e e e

Insertion Sort: An Improvement under Best Case Assumptions
Shell Sort e
MergeSort . ..ot
QuickSort
HeapSort
Empirical Evaluation of Sorting Algorithms R
Final Remarks on Efficiency

SUMMARY ..

CHAPTER 4 LISTS, STACKS, AND QUEUES
THE List CLASS .. .o e
THE CLASS MOTPheme .. .\vv ittt e
THE SortList CLASSo,
STACKS .

Application: Evaluating Polish Expressions
EXERCISES

TREES .

xi

167
168

171
171
179
180
180
185
190
198
200
201
205
206
210
216
224
230
231
231
232
234

235
236
244
249
252
252
256
258
260
267
269
269
274
276
282
288
288
290

