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Introduction

With this third volume, the series on non-deformable solids reaches
its acme; this is where we introduce and enlarge on the movement
equations of non-deformable solids, which was always the initial goal.

The first volume of the series served to prepare the material
necessary for writing these equations, that is how best to situate a
solid in space to study its motion, how to describe its kinematics, the
velocity and acceleration fields that drive it, how to characterize a
solid through its inertial and kinetic configurations, and determine the
energy statement of its motion.

But the development of this material, to arrive at the movement
equations, requires various mathematical tools which the authors
thought wuseful to remind rather than Iletting research them
individually. This is the point of Volume 2.

With this third volume, readers are ready to touch on the core of
the matter, the fundamental principle of dynamics and its application
to cases where solids are free, or considered to be linked when there
are bonds restricting their motion.

Chapter 1 of the book proposes a global vision of the fundamental
principle and the conditions for its use, in particular the case where the
observation frame of the motion of a solid is non-Galilean. The frame
from which the motion of a solid is observed is crucial as it is this
environment which exerts efforts upon it, affecting its progression.



x Movement Equations 3

The efforts, whether they are known or unknown (the links), have
on the motion energetic consequences which we will evaluate by
applying the fundamental principle. Chapter 2 places the solid in its
environment, identifies the efforts and characterizes the power and
energetic aspects they put into play throughout the motion.

The data for the problem are therefore acquired through the two
first chapters, that means the following one, Chapter 3, is then in a
position to begin applying the fundamental principle by presenting
and enlarging on the scalar consequences that result from it and which
produce the movement equations. Chapter 3 then ends with an
example which serves to look through the different forms of these
scalar consequences, knowing that the one which eventually is chosen
depends essentially on the problem at hand.

Chapter 4 proposes two interesting cases for the application of the
fundamental principle and shows how movement equations are used
in various complex problems the solutions to which can only be
obtained from hypotheses and simplifications without which the
problem would not be treatable. These two cases are the motion of the
Earth using inertial assumptions, and Foucault’s pendulum according
to the study by Michel Cazin in Sciences magazine in July 2000 where
he bases himself on simplifying hypotheses to propose a credible
explanation to the observed motion.

Chapter 5, which is the final chapter, plays a completely different
role. Developing applications of the fundamental principle and
establishing its scalar consequences require being familiar with the
elements which contribute to its formulation, as they are presented in
the first entry in the series. To grant readers with autonomy when
using this book, a methodological formulary has been included, which
recaps all essential points from Volume 1. This is the purpose of
Chapter 5.

Arriving at this point, it is interesting to continue exploring certain
individual cases through the ways they are used. This will be the
subject of the fourth and fifth books in this series; the first among
them will focus on the study of equilibrium situations for non-
deformable solids and on small motions (or oscillations) that they
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experience around them; the final entry in the series will look at the
motions of solid systems including cases of equilibrium and
oscillations, with an introduction to robotics.

With this present volume and with the ones that preceded it and
will follow it, the authors wished to explore the motion of non-
deformable solids, and provide professional or student users with a
structured mathematical approach. The lessons they have been giving
at the CNAM since the 1970s has convinced them of the benefits of
using such an approach and encouraged them to create this series.
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Table of Notations

M material point

! time

my, mass of the sun —2.10" kg

", mass of the Earth — 6.10" kg

Gy center of inertia of the Sun

Gy center of inertia of the Earth

G.G distance between the Sun and the Earth

T~H - 9

~150.10"m

% Universal gravitational constant

7 137 1 -2
6,67.10" ' mkg s

m(S) mass of a solid ()

51.1 Kronecker symbol

Eijk three-index permutation symbol

v vector

(’{)E(;)’—Az—z) basis

<’1> = OA'Z 1—4 Z) frame

w,6,0 Euler angles, specifically the precession,
nutation and spin angles in order

n(?jy‘) plane of the two vectors ¥ and W

=5 = lane of the two vectors ¥ and W passin

m(o[v.w) E ) RS
through point O

OM bipoint vector
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situation bipoint or situation vector of point
O in relation to the point O, of selected

frame of reference (A1)
angle of two vectors oriented from 74
towards W

norm of vector V'

scalar product of vectors V and W
vector product of vectors V and W

polar unit vector in cylindrical-polar
coordinates

polar unit vector in spherical coordinates
vector rotation of angle « around the axis

defined by vector u

trajectory, in the frame (/1) of material
point M, during the time interval [t‘ ,I,J

velocity at time ¢ of the material point M
during its motion in the frame ()

acceleration at time ¢ of the material point
M throughout its motion in the frame (/1)

rotation vector or rotation rate of the solid
(S) in its motion in relation to frame (4)

drive velocity of the material point M in
the relative motion of the frame () in

relation to the frame (4)

drive acceleration of the material point M
in the relative motion of the frame () in
relation to the frame (A)

Coriolis acceleration applied to the material

point M during its relative motion of the
frame (x) in relation to the frame (1)

derivative in relation to time of the vector
V' in the frame (l)
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(7}, =[5}

ACe]

s{7}
ACS

of =H{TV oM7)

(e{)

{4, =|«

W (e,)]

{Z}

:Z(Ql*"'Qﬁ Ql”"'le

;

{Z — s}

torsor characterized by its two reduction

elements at point P
resultant of the torsor {<7 } : 1* reduction

element
moment at P of the torsor {7 } s pod

reduction element

ST =T} + QB A5{7 )
scalar invariant of the torsor {<7},
independent of point P

product of two torsors

velocity distributing torsor or kinematic
torsor associated with the motion of the
material point Py of the solid (S)

kinetic torsor associated with the motion of
the solid (S) in the frame (4)

dynamic torsor associated with the motion
of solid (S) in the frame (1)

inertia operator of the solid (S) provided

the measure of mass m
inertia drive torsor of the solid (S) in the

relative motion of (1) in relation to (g)
inertia Coriolis torsor of solid (S) in the

motion relative of (1) in relation to (g)

torsor of known efforts

acceleration of Earth’s gravity

~9.80665 ms™ (9.81on average)
depending on the location and latitude of the
body which is subject to

torsor of unknown efforts
link acting upon a solid

torsor of link efforts applied to the solid

(S)
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?"‘”(F—)S)

ns (r—s)

power developed by the set of forces F
acting upon the solid (S) throughout its

motion
partial power relative to the variable Q, ,

developed by the set of forces F acting
upon the solid (S) throughout its motion

kinetic energy of the solid (S) throughout

its motion in relation to the frame (A)

Lagrange equation relative to the variable

Qe

When the situation of the solid (S) in the frame (1) is represented by the

parameters (J, , we write : {f} ={;‘n}Qal where

{4, =| "6(a5)

o do_’_ jl

“5(4,8)

partial distributing torsor relative to the
variable O,

partial rotation rate relative to the variable
Q, , component of the variable Q,” of the
rotation rate, such that @/ = “§(1,5)0,
component of the variable O, of the

velocity vector of the point Oy, such that

vu) (OS ) = adox Qu’
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