

Dennis Merritt

Building Expert Systems
in Prolog

With 27 Illustrations

&

- Springer- Verlag
World Publishing Corp

Dennis Merritt, Newton, MA 02158, USA

Editors ’

Steven S. Muchnick, SUN Microsystems, rAnsuntain View, CA 94043, USA
Peter Schnupp, InterFace Computer Gmbiy X Mnchen 81, West Germany

Library of Congress Cataloging in Publication Data
Merritt, Dennis.
Building expert systems in Prolog / Dennis Merritt.
p. cm. - (Springer compass international)
Bibliography: p.
Includes indexes.
ISBN 0-387-97016-9 (alk. paper): $ 34.00 (est.) _
1. Expert systems (Computer science) 2. Prolog‘(Computer program
language) 1. Title. II. Series.
QA76.76E95M47 1989 : ’
006.3'3--dc20) 896193

© 1989 by Springer-Verlag New York Inc.

All rights reserved. This work may not be translated or copied in whole or in part without the
written permission of the publisher (Springer-Verlag, 175 Fifth Avenue, New York, NY
10010, USA), except for brief excerpts in connection with review or scholarly analysis. Use in
connection with any form of information storage and retrieval, clectronic adaption, computer
software, or by similar or dissimliar methology now known or hereafter developed is

forbidden.

The use of general descriptive names, trade names, trademarks, etc. in this publication, even
if the former are not especially identified, is not to be taken as a sign that such names, as
understood by the Trade Marks and Merchandise Marks Act, may accordingly be used freely

by anyone.

Reprinted by World Publishing Corporation. Beijing, 1992
for distribution and sale in The People’s Republic of China only
ISBN 7-5062-1291-9

ISBN 0-387-97016-9 Springer-Verlag New York Berlin Heidelberg
ISBN 3-540-97016-9 Springer-Verlag Berlin Heidelberg New York

NI

Preface

- .

When I compare the books on expert systems in my library with the production
expert systems I know of, I note that there are few good books on building expert
systems in Prolog. Of course, the set of actual production systems is a little small
for a valid statistical sample, at least at the time and place of this writing — here in
Germany, and in the first days of 1989. But there are at least some systems I have
seen running in real life commercial and industrial environments, and not only at
trade shows.

I can observe the most impressive one in my immediate neighborhood. It is
installed in the Telephone Shop of the German Federal PTT near the Munich
National Theater, and helps configure telephone systems and small PBXs for mostly
private customers. It has a neat, graphical interface, and constructs and prices an
individual telephone installation interactively before the very eyes of the customer.

The hidden features of the system are even more impressive. It is part of an expert
system network with a distributed knowledge base that will grow to about 150
installations in every Telephone Shop throughout Germany. Each of them can be
updated individually overnight via Teletex to present special offers or to adapt the
selection process to the hardware supplies currently available at the local ware-
houses. ’

Another of these industrial systems supervises and controls in “soft” real time the
excavators currently used in Tokyo for subway construction. It was developed on
a Unix workstation and downloaded to a single board computer using a real time .
operating system. The production computer runs exactly the same Prolog imple-
mentation that was used for programming, too.

And there are two or three other systems that are perhaps not as showy, but do
useful work for real applications, such as oil drilling in the North Sea, or estimating
the risks of life msurance for one of the largest insurance companies in the world.
What all these tystems have in common is their implementation language: Prolog,
and they run on “real life” computers like Unix workstations or minis like VAXs.
Certainly this is one regson for the preference of Prolog in commercial applications.

But there is:one other, probably even more important advantage: Prolog is a
programmer’s and software engineer’s dream. It is compact, highly readable, and
arguably the “most structured” language of them all. Not only has it done away with
virtually all control flow statements, but even explicit variable assignment, too!

These virtues are certainly reason enough to base not only systems, but textbooks,
onthis language. Dennis Merritt has done this in an admirable manner. He explains
the basic principles, as well as the specialized knowledge representation and proc-
essing techniques that are indispensable for the implementation of industrial
software such as those mentioned above. This is important because the foremost

viii Preface

reason for the relative neglect of Prolog in expert system literature is probably the
prejudice that “it can be used only for backward chaining rules.” Nothing is farther
from the truth. Its relational data base model and its underlying unification
mechanism adapt easily and naturally to virtually any programming paradigm one
cares to use. Merritt shows how this works using a copious variety of examples. His

“book will certainly be of particular value for the professional developer of industrial
‘knowledge-based applications, as well as for the student or programmer interested
in learning about or building expert systems. I am, therefore, happy to have served
as his editor.

Peter H. Schnupp
Munich, January 1989

Acknowledgements

A number of people have helped make this book possible. They in-
clude Dave Litwack and Bill Linn of Cullinet who provided the op-
portunity and encouragement to explore these ideas. Further
thanks goes to Park Gerald and the Boston Computer Society,
sounding boards for many of the programs in the book. Without the
excellent Prolog products from Cogent, AAIS, Arity, and Logic Pro-
" gramming Associates none of the code would have been developed.
A special thanks goes to Peter Gable and Paul Weiss of Arity for
their early help and Allan Littleford, provider of both Cogent Prolog
and feedback on the book. Jim Humphreys of Suffolk University
gave the most careful reading of the book, and advice based on years
of experience. As have many other Mac converts, I feel compelled to
mention my Macintosh SE, Microsoft Word and, Cricket Draw for
creating an enjoyable envirocnment for writing books. And finally
without both the technical and emotional support of Mary Kroening
the book would not have been started or finished.

Contents

T IROAUCTION .o e et eyt 1
. k.1 Expert Systems e {
1.2 Expert System Featureso o i 4

.. Goal-Driven Reasoningocoieeeeeoii... 5

« . Uncertainty e P 6
- Data Driven Reasoning ."............ e 7

! Data Representation’ e 9
User Interface e T 9
Explanations000.......... e 11

4.3 Sample Applications N e 11
LA Prolog ..o S 12

.S ASSUMPUONS | oot e e e 13

2 Using Prolog's Inference Engine e 15
2.1 The Bird Identification System 15
Rule Formats e 16

Rules About Birds TR SRR 16

Rules for Hierarchical Relationships 17

Rules for Other Relationships 19

2.2 UserInterface J N 21
Attribute Value pairs 21

"Asking the User PR PR 22
Remembering the Answer SR e 23
Multi-Valued Answers TR 24

Menus for the Usero i i, 24

Other Enhancements 25

2.3 ASimple Shell ... 25

xii Contents

Command Loopcooiiviiiiiii 27

A Tool for Non-Programmers 30

2.4 SUMMATYoovveriiniiiiaeereeieiennnnnns Teeaes e 30

Exercisesl e 31

3 Backward Chaining with Uncertainty 33
3.1 Certainty Factors oiiiiiiiiiiiiaiiiinn, 33 .

AnExample e 34

Rule Uncertaintyl 35

UserUncertainty cooiiiiieiinennn... 36

Combining Certaintiesccoiiivieeenn... 37

Properties of Certainty Factors 37

3.2 MYCIN's Certainty Factorscouuu... 38

Determining Premise CF, 39

Combining Premise CF and ConclusionCF 39

Premise Threshold CF e S 39

Combining CFs i i, 40

33 RuleFormat i 41

34 Thelnference Engineo, 42

Working Storage e T 43

Find a Value for an Attribute e 44

Attribute Value Already Known e 45

Ask User for Attribute Value 45

Deduce Attribute Value fromRules ,.................... 45

Negationttt et 48

3.5 Makingthe Shell, 48

Starting the Inference 49

3.6 English-likeRulescccoiiiuvun... eee. 50

EXercisest 53

4 EXplanation 55

Value of Explanations to the User O 55

Value of Explanations to the Developer 56

Typesof Explanationouus. 56

4.1 ExplanationinClam 57

Tracing 60

How Explanations 62

Why Questions e 65

4.2 Native Prolog Systems e 67

EXEICISES .« .t v ottt ettt et e e 71

§ Forward Chaining 73

5.1 PreductionSystems i, 73

52 UsingOops ..ottt e 75

5.3 Implementationttt . 81

.

Contents

5.4 ExplanationsforOops 7 .ol
5.5 Enhancements, [
5.6 RuleSelection i,

Generating the Conflict Set ...

Time stamps e P

ST LEX o
ChangesintheRules e
Implementing LEX e

58 MEA e

6.3 The Manipulation Predicates
6.4 UsingFrames i,
6.5 SUMMArY i e

Exercises e

T INtegration
7.1 Foops (Framesand Oops)c.ccvuuinnuion...
Instances [P
Rules for Frinsts ...
Adding Prolog to Foops e
7.2 Room Configuration,
Furniture Frames
Frame Demons
Initial Data
InputData RPN
The Rules e
OutputData

73 ASampleRun
T4 SUMMArY ... e
EXercises

8 Performance e
8.1 Backward Chaining Indexesc......
8.2 Rete Match Algorithm <. e e

Network Nodesccoiiiiiinnnnn..
Network Propagation
Example of Network Propagation
Performance Improvements
8.3 The Rete Graph Data Structures
8.4 Propagating Tokens e
85 Th RuleCompiler i,
8.6 Integration with Foops

Xiii

xiv Contents

8.7 Design Tradeoffs il 161
EXeICISES v ittt i e e e e 161

9 Userlnterface ittt i e 163
9.10bject Oriented Window Interface 164

9.2 Developer's Interface to Windows 164

9.3 High-Level Window Implementation e 169
Message Passing 170
Inheritance e 171

9.4 Low-Level Window Implementation 173
Exercises 177

10 TwoHybrids 179
10.1 CVGEN ... 180

10.2 The KnowledgeBase 181

- ~ Rule for Parameters 182
Rules for Derived Information 183

Questions for the User 183

Default Rules R 185

Rules for Edits 185

Static Information 186

10.3 Inference Engine, 187
10.4 Explanations 189

10.5 Environment e 190

106 AUMP 191

107 Summary ... 193
EXercisesot 193

11 Prototypingot 195
11,1 TheProblem 195
11.2 The Sales Advisor Knowledge Base 196
Qualifying 197
Objectives - Benefits - Features 198

Situation Analysis 199
Competitive Analysis 200
Miscellaneous Advice 200
UserQueries PR 201

11.3 The Inferenge Engine 202
11.4 UserlInterface PO 204

LLS Summary ... 205
Exercises i 206

12 Rubik'sCubeoo oo 207
12,1 TheProblem, 208

Contents xv

123 ROMUON ... 211

124 HighLevelRules i .. 212

12.5 Improvingthe State e 213

126 TheSearch 214

12.7 More Heuristics i 216

12.8 UserlInterface i 217

12.9 On the Limits of Machines e 217
Exercises 218

Appendix A Native 219
Sample Dialog L. 219

Birds Knowledge Base 220

Native Shell 224

Appendix B Clam 229
Sample Dialog e 229
CarKnowledgeBase 231

Clam 232

Ldruls ..o o 242

Appendix € O0ps ...t 245
Sample Dialog 245

Room Knowledge Base 248

O0ps .. 255

Appendix D Foops 261
Sample Dialog 261

Room Knowledge Base (Foops) 263

Foops 272

Appendix E Rete-Foops 288
Rete Compilerand Runtime 285

Appendix F Windows 297
Window Demonstration 297

Windows (abbreviated) - 300

Appendix G Rubiko Lo 311
Rubik ... o e 31t

Rubdata, 326

GIossSary L 333
References ... 341
Predicate Index 343

1
Introduction

Over the past several years there have been many implementations
of expert systems using various tools and various hardware plat-
forms, from powerful LISP machine workstations to smaller per-
sonal computers.

The technology has left the confines of the academic world and
has spread through many commercial institutions. People wanting
to explore the technology and experiment with it have a bewildering
selection of tools from which to choose. There continues to be a de-
bate as to whether or not it is best to write expert systems using a
high-level shell, an Al language such as LISP or Prolog, or a con-
ventional language such as C. ’

This book is designed to teach you how to build expert systems
from the inside out. It presents the various features used in expert
systems, shows how to implement them in Prolog, and how to use
them to solve problems.

The code presented in this book is a foundation from which many _
types of expert systems can be built. It can be modified and tuned for
particular applications. It can be used for rapid prototyping. It can
be used as an educational laboratory for experimenting with expert
system concepts.

1.1 Expert Systems

Expert systems are computer applications which embody some non~;
algorithmic expertise for solving certain types of problems. For
example, expert systems are used in diagnostic apphcatxons
servicing both people and machinery. They also play chess, make
financial planning decisions, configure computers, monitor real
time systems, underwrite insurance policies, and perform many
other services which previously required human expertise.

2 Building Expert Systems in Prolog

Domain User
Expert 1
|
; User
expertise
P Interface

inference
Engine

KnoWIedge ; System

Engineer . Engineer
erm Knowledge Working
expertise * Base Storage

Figure 1.1 Expert system components and human interfaces

Expert systems have a number of major system components and
interface with individuals in various roles. These are illustrated
in figure 1.1. The major components are:

* Knowledge base - a declarative representation of the expertise,
often in IF THEN rules;

* Working storage - the data which is specific to a problem be-
ing solved;
i'{“
* Inference engine - the code at the core of the system which de-
" rives recommendations from the knowledge base and prob-
lem-specific data in working storage;

¢ User interface - the code that controls the dialog between the
user and the system.

To understand expert system design, it is also necessary to under-
stand the major roles of individuals who interact with the system.
These are:

Introduction 3

¢ ‘Domain expert - the individual or individuals who currently
" are experts solving the problems the system is intended to
solve;

. Knowlédge engineer - the individual who encodes the expert's
‘knowledge in a declaratlve form that can be used by the expert
system,;

¢ User - the individual who will be consulting with the system to -
get advice which would have been provided by the expert.

Many expert systems are built with products called expert system
shells. The shell is a piece of software which contains the user in-
terface, a format for declarative knowledge in the knowledge base,
and an inference engine. The knowledge engineer uses the shell to
build a system for a particular problem domain.

Expert systems are also built with shells that are custom developed
for particular applications. In this case there is another key indi-
vidual:

¢ System engineer - the individual who builds the user inter-
face, designs the declarative format of the knowledge base,
and implements the inference engine.

Depending on the size of the project, the knowledge engineer and the
system engineer might be the same person. For a custom built sys-
tem, the design of the format of the knowledge base, and the coding
of the domain knowledge are closely related. The format has a sig-
nificant effect on the coding of the knowledge.

One of the major bottlenecks in building expert systems is the
knowledge engineering process. The coding of the expertise into
the declarative rule format can be a difficult and tedious task. One
major advantage of a customized shell is that the format of the
knowledge base can be designed to fac1htate the knowledge engi-
neering process.

The objective of this design process is to reduce the semantic gap.
Semantic gap refers to the difference between the natural represen-
tation of some knowledge and the programmatic representation of
that knowledge. For example, compare the semantic gap between a
mathematical formula and its representation in both assembler
and FORTRAN. FORTRAN code (for formulas) has a smaller
semantic gap and is therefor easier to work with.

Since the major bottleneck in expert system development is the
building of the knowledge base, it stands to reason that the semantic
gap between the expert's representation of the knowledge and the

4 Building Expert Systems in Prolog

representation in the knowledge base should be minimized. With a
customized system, the system engineer can implement a knowl-
edge base whose structures are as close as possible to those used by
the domain expert.

This book concentrates primarily on the techniques used by the
system engineer and knowledge engineer to design customized
systems. It explains the various types of inference engines and
knowledge bases that can be designed, and how to build and use
them. It tells how they can be mixed together for some problems, and
customized to meet the needs of a given application.

1.2 Expert System Features

There are a number of features which are commonly used in expert
systems. Some shells provide most of these features, and others just
a few. Customized shells provide the features which are best suited
for the particular problem. The major features covered in this book
are:.

* Goal driven reasoning or backward chaining - an inference
technique which uses IF THEN rules to repetitively break a
goal into smaller sub-goals which are easier to prove;

* Coping with uncertainty - the ability of the system to reason
with rules and data which are not precisely known;

. Dat; driven reasoning or forward chaining - an inference
technique which uses IF THEN rules to deduce a problem
" solution from initial data;

* Data representation --the way in which the problem specific
data in the system is stored and accessed;

* User interface - that portion of the code which creates an easy
to use system;

¢ Explanations - the ability of the system to explain the reason-
ing process that it used to reach a recommendation.

Introduction 8

Goal-Driven Reasoning

Goal-driven reasoning, or backward chaining, is an efficient way
to solve problems that can be modelled as "structured selection”
problems. That is, the aim of the system is to pick the best choice
from many enumerated possibilities. For example an identifica-
tion problem falls in this category. Diagnostic syste = also fit this
model, since the aim of the system is to pick the corre - diagnosis.

The knowledge is structured in rules which descrit -~ how each of
the possibilities might be selected. The rule breaks the problem into
sub-problems. For example, the following top level rules are in a
system which identifies birds.

IF
family is albatross and
color is white

THEN
bird is laysan albatross.

IF
family is albatross and
color is dark
THEN
bird is black footed albatross.

The system would try all of the rules which gave information
satisfying the goal of identifying the bird. Each would trigger sub-
goals. In the case of these two rules, the sub-goals of determining
the family and the color would be pursued. The following rule is
one that satisfies the family sub-goal:

IF
order is tubenose and
size large and
wings long narrow
THEN
family is albatross.

The sub-goals of determining color, size, and wings would be satis-
fied by asking the user. By having the lowest level sub-goal satis-

- fied or denied by the user, the system effectively carries on a dialog
with the user. The user sees the system asking questions and re-
sponding to answers as it attempts to find the rule which correctly
identifies the bird.

6 Building Expert Systems in Prolog

Forward Chaining

Data + Rules = Conclusion
§:2 IF a=1 & b=2 THEN c=3 IF c=3 THEN d=4 d=4

Backward Chaining

Subgoals - Rules —= Goal
=1
§=2 IFa=1 & b=2 THEN c=3 IF c=3 THEN d=4 d=4

Figure 1.2. Difference between forward and backward chaining

Uncertainty

Often times in structured selection problems the final answer is not
known with complete certainty. The expert's rules might be vague,
and the user might be unsure of answers to questions. This can be
easily seen in medical diagnostic systems where the expert is not
able to be definite about the relationship between symptoms and dis-
eases. In fact, the doctor might offer multiple possible diagnoses.

For expert systems to work in the real world they must also be able
to deal with uncertainty. One of the simplest schemes is to associate
a numeric value with each piece of information in the system. The
numeric value represents the certainty with which the information
is known. There are numerous ways in which these numbers can
be defined, and how they are combined during the inference pro-
cess.

