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PREFACE

Dimension theory is a branch of topology devoted to the definition
and study of the notion of dimension in certain classes of topological
spaces. It originated in the early twenties and rapidly developed during
the next fifteen years. The investigations of that period were concentrated
almost exclusively on separable metric spaces; they are brilliantly re-
capitulated in Hurewicz and Wallman’s book Dimension Theory, published
in 1941, After the initial impetus, dimension theory was at a standstill
for ten years or more. A fresh start was made at the beginning of the fifties,
when it was discovered that many results obtained for separable metric
spaces can be extended to larger classes of spaces, provided that the dimen-
sion is properly defined. The last reservation necessitates an explanation.
It is possible to define the dimension of a topological space X in three
different ways, the small inductive dimension indX, the large inductive
dimension IndX, and the covering dimension dimX. The three dimension
functions coincide in the class of separable metric spaces, i.e., indX = IndX
= dimX for every separable metric space X. In larger classes of spaces
the dimensions ind, Ind, and dim diverge. At first, the small inductive
dimension ind was chiefly used; this notion has a great intuitive appeal
and leads quickly and economically to an elegant theory. The dimension
functions Ind and dim played an auxiliary role and often were not even
explicitly defined. To attain the next stage of development of dimension
theory, namely its extension to larger classes of spaces, first and foremost
to the class of metrizable spaces, it was necessary to realize that in fact
there are three theories of dimension and to decide which is the proper
one. The adoption of such a point of view immediately led to the under-
standing that the dimension ind is practically of no importance outside
the class of separable metric spaces and that the dimension dim prevails
over the dimension Ind. The greatest achievement in dimension theory during
the fifties was the discovery that IndX = dimX for every metric space X
and the creation of a satisfactory dimension theory for metrizable spaces.
Since that time many important results on dimension of topological spaces
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have been obtained; they primarily bear upon the covering dimension
dim. Included among them are theorems of an entirely new type, such as
the factorization theorems, with no counterpart in the classical theory,
and a few quite complicated examples, which finally demarcated the range
of applicability of various dimension functions.

The above outline of the history of dimension theory helps to explain the
choice and arrangement of the material in the present book. In Chapter 1,
which in itself constitutes more than half of the book, the classical
dimension theory of separable metric spaces is developed. The purpose
of the chapter is twofold: to present a self-contained exposition of the
most important section of dimension theory and to provide the neces-
sary geometric background for the rather abstract considerations of sub-

"sequent chapters. Chapters 2 and 3 are devoted to the large inductive
dimension and the covering dimension, respectively. They contain the most
significant results in dimension theory of general topological spaces and
exhaustive information on further results. Chapter 4, the last in the book,
develops the dimension theory of metrizable spaces. The interdependence
of Chapters 24 is rather loose. After having read Chapter 1, the reader
should be able to continue the reading according to his own interests or
needs; in particular, he can read small fragments of Sections 3.1 and 3.2
and pass to Chapter 4 (cf. the introduction to that chapter).

Chapter 1 is quite elementary; the reader is assumed to be familiar
only with the very fundamental notions of topology of separable metric
spaces. The subsequent chapters are more difficult and demand from the
reader some acquaintance with the notions and methods of general topology.

Each section ends with historical and bibliographic notes. Those are
followed by problems which aim both at testing the reader’s comprehension
of the material and at providing additional information; the problet_n-s
usually contain detailed hints, which, in fact, are outlines of proofs. N

The mark ] indicates the end of a proof or of an example. If it appears
immediately after the statement of a theorem, a proposition or a corollary,
it means that the statement is obviously valid.

Numbers in square brackets refer to the bibliography at the end of
the book. The papers of each author are numbered separately, the number
being the year of publication. In referring to my General Topology (Enge-i:
king [1977]), which is quite often cited in the second half of the present
book, the symbol [GT] is used.

In 1971-1973 1 gave a two-year course of lectures on dlmensmn theory
at the Warsaw University; this book is based on the notes from those
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lectures. When preparing the present text, I availed myself of the comments
of my students and colleagues. Thanks are due to K. Alster, J. Chaber,
J..Kaniewski, P. Minc, R. Pol, T. Przymusisiski, J. Przytycki and K. Wojt-
kowska. I am particularly obliged to Mrs. E. Pol, the first reader of this
book, for her helpful cooperation, and to J. Krasinkiewicz for his careful

reading of Chapter 1.
Ryszard Engelking

Warsaw, February 1977
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CHAPTER 1

DIMENSION THEORY OF SEPARABLE METRIC
SPACES

In the present chapter the classical dimension theory of separable
metric spaces is developed. Practically all the results of this chapter were
obtained in the years 1920-1940. They constitute a canon on which, in
subsequent years, dimension theory for larger classes of spaces was modelled.
Similarly, in Chapters 2-4 we shall follow the pattern of Chapter 1 and
constantly refer to the classical theory. This arrangement influences our
exposition: the classical material is discussed here in relation to modern
currents in the theory; in particular, the dimension functions Ind and
dim are introduced at an early stage and are discussed simultaneously
with the dimension function ind. (

To avoid repetitions in subsequent chapters, a few definitions and
theorems are stated in a more general setting, not for separable metric but
for topological, Hausdorff, regular or normal spaces; this is done only
where the generalization does not influence the proof. If the reader is not
acquainted with the notions of general topology, he should read “metric
space” instead of “topological space”, “Hausdorff space”, “regular space”,
and “normal space”. Reading the chapter for the first time, one can omit
Sections 1.4 and 1.12-1.14, which deal with rather special topics; similarly,
the final parts of Sections 1.6, 1.8 and 1.9 can be skipped.

Let us describe briefly the contents of this chapter.

_Section 1.1 opens with the definition of the small inductive dimension
ind; in the sequel some simple consequences and reformulations of the
definition are discussed. Sections 1.2 and 1.3 are devoted to a study of zero-
dimensional spaces. We prove several important theorems, specified in
the titles of the sections, which are generalized to spaces of higher dimension
in Sections 1.5, 1.7 and 1.11.

In Section 1.4 we compare the properties of zero-dimensional spaces
with the properties of different highly disconnected spaces. From this
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comparison it follows that the class .of zero-dimensional spaces in the
sense of the small inductive dimension is the best candidate for the zero
level in a classification of separable metric spaces according to their di-
mension. The results of this section are not used in the sequel of the book.

Section 1.5 contains the first group of basic theorems on n-dimensional
spaces. As will become clear further on, the theorems in this group depend
on the dimension ind, whereas the theorems that follow them depend
on the dimension dim. Besides the generalizations of five theorems proved
in Sections 1.2 and 1.3 for zero-dimensional spaces, Section 1.5 contams
the decomposition and addition theorems.

In Section 1.6 the large inductive dimension Ind and the *venng
dimension dim are introduced; they both coincide with the small inductive -
dimension ind in the class of separable metric spaces. In larger classes
of spaces the dimensions ind, Ind and dim diverge. This subject will be
discussed thoroughly in the following chapters. In particular, it will become
evident that the dimension ind, though excellent in the class of separable
metric spaces, loses its importance outside this class. 1

Section 1.7 opens with the compactification theorem. The location
of this theorem at such an early stage in the exposition of dimension theory
is a novelty which, it seems, permits a clearer arrangement of the material.
From the compactification theorem the coincidence of ind, Ind, and dim
for separable metric spaces is deduced.

In Section 1.8 we discuss the dimensional properties of Euclidean
spaces. We begin with the fundamental theorem of dimension theory,
which states that indR" = IndR" = dimR" = n; then we characterize
n-dimensional subsets of R" as sets with a non-empty interior, and we
show that no closed subset of dimension < n—2 separates R". This last
result is strengthened in Mazurkiewicz’s theorem, which is established
in the final part of the section with the assistance of Lebesgue’s covering
theorem.

Section 1.9 opens with the characterization of dimension in terms
of extending mappings to spheres from a closed subspace over the whole
space. From this characterization the Cantor-manifold theorem is deduced.
In the final part of the section we give some information on the cohomo-
logical dimension.

In Section 1.10 we characterize n-dimensional spaces in terms of map-
pings with arbitrarily small fibers to polyhedra of geometric dimension
< n and develop the technics of nerves and »-mappings which are crucial
for the considerations of this and the following section.
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In Section 1.11 we prove that every n-dimensional space can be embedded
in R?**1 and we describe two subspaces of R***! which contain topologi- -
cally all n-dimensional spaces; the second of those is a compact space.

The last three sections are of a more special character. Section 1.12
is devoted to a study of the relations between the dimensions of the domain
and the range of a continuous mapping. In Section 1.13 we characterize
compact spaces of dimension < n as spaces homeomorphic to the limits
of inverse sequences of polyhedra of geometric dimension < n, and in
.Section 1.14 we briefly discuss the prospects for an axiomatization of
dimension theory.

1.1. Definition of the small inductive dimension

1.1.1. Definition. To every regular space X one assigns the small inductive
dimension of X, denoted by ind.X, which is an integer larger than or equal
to —1 or the “infinite number” oo ; the definition of the dimension function
ind consists in the following conditions:

(MU1) indX = —1 if and only if X = O;
(MU2) indX < n, where n = 0, 1, ..., if for every point x € X and each neigh-
bourhood V = X of the point x there exists an open set U = X such that

xeUcV and indFrU<n-—1;

(MU3) indX = n if indX < n and indX > n—1, i.e., the inequality indX
< n—1 does not hold,;
(MU4) indX = o0 if indX > n forn = —1,0,1, ...

The small inductive dimension ind is also called the Menger—Urysohn
dimension.

Applying induction with respect to indX, one can easily verify that
whenever regular spaces X and Y are homeomorphic, then indX = indY,
i.e., the small inductive dimension is a topological invariant.

In order to simplify the statements of certain results proved in the
sequel, we shall assume that the formulas » < o0 and n+o00 = 0+n
= o0+00 = o0 hold for every integer n.

Since every subspace M of a regular space X is itself regular if the
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dimension ind is defined for a space X it is also defined for every subspace
M of the space X. ’

1.1.2. The subspace theorem. For every subspace M of a regular space X
we have ind M < indX.

Proof. The theorem is obvious. if indX = oo, so that one can suppose
that indX < oo. We shall apply induction. with respect to indX. Clearly,
the inequality holds if indX = —1.

Assume that the theorem is proved for all regular spaces whose dimen-
sion does not exceed n—1 > —1. Consider a regular space X with indX
= n, a subspace M of the space X, a point x € M and a neighbourhood
V of the point x in M. By the definition of the subspace topology, there
exists an open subset ¥, of the space X satisfying the equality V' = MnV;.
Since indX < n, there exists an open set U; = X such that

xeU,cV, and indFrU,<n-1.

The intersection U = MnU, is open in M and satisfies x e U < V.
The boundary Fry, U of the set U in the space M is equal to MAMnU, N
NMN\U,, where the bar denotes the closure operation in the space X;
thus the boundary Fry U is a subspace of the space FrU,. Hence, by the
inductive assumption, ind Fry U < n—1, which—together with (MU2)—
yields the inequality ind M < n = indX.[]

Sometimes it is more convenient to apply condition (MU2) in a slightly
different form, involving the notion of a partition.

1.1.3. Definition. Let X be a topological space and 4, B a pair of disjoint
subsets of the space X; we say that a set L < X is a partition between A
and B if there exist open sets U, W < X satisfying the conditions

(1) AcU, Bc W, UnW=@ and X\L=UUW.
Clearly, the partition L is a closed subset of X.

The notion of a partition is related to the notion of a separator. Let us
recall that a set T < X is a separator between A and B, or T separates the
space X between A and B, if there exist two sets U, and W, open in the
subspace X\.T and such that 4 < Uy, B € W,, UpnWy = @ and X\C
= UyUV,. Obviously, a set L c X is a partition between 4 and B if and
only if L is a closed subset of X and L is a separator between 4 and B.
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Separators are not to be confused with cuts, a related notion we.
will refer to in the notes below and in Section 1.8. Let us recall
that a set T« X is a cut between A and B, or T cuts the space X between
A and B, if the sets 4, B and T are pairwise disjoint and every continuum,
i.e., a compact connected space C < X, intersecting both 4 and B intersects
the set T. Clearly, every separator between A4 and B is a cut between A4
and B, but the two notions are not equivalent (see Problems 1.1.D and

1.8.F).

1.1.4. Proposition. A regular space X satisfies the inequality indX < n > 0
if and only if for every point x € X and each closed set B = X such that
x ¢ B there exists a partition L between x and B such that indL < n—1.

Proof. Let X be a regular space satisfyirg ind X < n > 0; consider a point
x € X and a closed set B = X such that x ¢ B. There exist a rcighbourhood
¥ < X of the point x such that ¥ = X\ B and an open set U = X such
that x e U = V and ind FrU < n—1. One easily sees that the set L = FrU
is a partition between x and B; the sets U and W = X\ U satisfy condi-
tions (1). '

=9

Now, assume that a regular space X satisfies the condition of the theorem;
consider a point x € X and a neighbourhood ¥V < X of the point x. Let L
be a partition between x and B = X \V such that indL < n—1 and let
U, W = X be open subsets of X satisfying conditions (1). We have

xeUcX\WcX\B=V

FrU c X\U)n(X\W) = X\(UuW)=1L,
so that indFrU < n—1 by virtue of 1.1.2. Hence indX < n.[J

Fig. 1

and
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Obviously, a regular space X satisfies the inequality indX <»n > 0
if and only if X has a base & such that ind FrU < n—1 for every Ue 4.
In the realm of separable metric spaces this observation can be made more

precise. 1

1.1.5. Lemma. If' a topological space X has a countable base, then every
base @ for the space X contains a countable family #, which is a base for X.

' Proof. Let 2 = {V;}, be a countable base for the space X. Fori = 1, 2, ...
define -

1

B, ={Ue@B: UcV};

as 4 is a base for X, we have |_) #, = V,. The subspace ¥, of the space X
also has a countable base, so that the open cover %, of V; contains a count-

(-]
able subcover #,,,;. The family &, = _) #,,, = # is countable and is
i=1

a base for X; indeed, every non-empty open subset of X can be represented
as the union of a subfamily o’ 2, and thus can also be represented as the
union of a subfamily of 4,.J

1.1.6. Theorem. A separabie metric space X satisfies the inequality indX
< n > 0if and only if X has a countable base & such that ind FrU < n—1

Jor every Ue 2.01

Historical and bibliographic notes

The dimension of simple geometric objects is one of the most intuitive
mathematical notions. There is no doubt that a segment, a square and
a cube have dimension 1, 2 and 3, respectively. The necessity of a precise
definition of dimension became obvious only when it was established
that a segment has exactly as many points as a square (Cantor 1878),
and that a square has a continuous parametric representation on a segment,
i.e., that there exist continuous functions x(#) and y(#) such that points
of the form (x(¢), y(¢)) fill out a square when # runs through a segment
(Peano 1890). First and foremost the question arose whether there exists
a parametric representation of a square on a segment which is at the same
time one-to-one and continuous, i.e., whether a segment and a square
are homeomorphic, and—more generally—whether the n-cube I" and the
m-cube ™ are homeomorphic if n # m; clearly, a negative answer was
expected. Between 1890 and 1910 a few faulty proofs of the fact that /™
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and I™ are not homeomorphic if n # m were produced and it was established
that 7, I* and I® are all topologically different.

The theorem that /™ and I™ are not homeomorphic if n # m was proved
by Brouwer in [1911]. The idea suggests itself that to prove this theorem -
one should define a function d assigning to every space a natural number,
. expressing the dimension of that space, such that to every pair of homeo-
morphic spaces the same natural number is assigned and that d(I") = n.
It was none too easy, however, to discover such functions; the search
for them gave rise to dimension theory. In Brouwer’s paper [1911] no
function d is explicitly defined, yet an analysis of the proof shows that to
differentiate I" and I™ for n # m the author applies the fact that for a suffi-
ciently small positive number & it is impossible to transform the n-cube
I" < R" into a polyhedron K = R™ of geometric dimension less than »
by a continuous mapping f: I" - K such that o(x, f(x)) < & for every
x € I". As we shall show in Section 1.10, this property characterizes compact
subspaces of R" which have dimension equal to n. Another topological
property of the n-cube I was discovered by Lebesgue in [1911], viz. the
fact that /™ can be covered, for every ¢ > 0, by a finite family of closed
sets with diameters less than ¢ such that all intersections of n+2 members
of the family are empty, and cannot be covered by a finite family of closed
sets with diameters less than 1 such that all intersections of n+ 1 members
of the family are empty. Obviously, Lebesgue’s observation implies that
I" and I™ are not homeomorphic if » # m. Though the proof outlined
by Lebesgue contains a gap (filled by Brouwer in [1913] and by Lebesgue
in [1921]), nevertheless the discovery of the new invariant was an important
achievement which eventually led to the definition of the covering dimension.
Lebesgue’s paper [1911] contains one more important discovery. The author
formulated the theorem (the proof was given in his paper [1921]) that for
every continuous parametric representation f(t) = (x, (1), x2(t), ..., x.(t))
of the n-cube I” on the closed unit interval 7, some fibres of f, i.e., inverse
images of one-point sets, have cardinality at least n+1, and that I has
a continuous parametric representation on /7 with fibres of cardix\lality
at most n+1.

A decisive step towards the definition of dimension was made by Poin-
caré in [1912], where he observed that the dimension is related to the no-
tion of separation and could be defined inductively. Poincaré called atten-
tion to the simple fact that solids can be separated by surfaces, surfaces
by lines, and lines by points. It was due to the character of the journal
for which Poincaré was writing and also to his death in the same year
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1912 that Poincaré’s important ideas were not presented as a precise defi-
nition of dimension. '

The first definition of a dimension function was given by Brouwer
in [1913], where he defined a topological invariant .of compact metric
spaces, called Dimensionsgrad, and proved that the Dimensionsgrad of
the n-cube I" is equal to n. In conformity with Poincaré’s suggestion, the
definition is inductive and refers to the notion of a cut: Brouwer defined
the spaces with Dimensionsgrad 0 as spaces which do not contain any
continuum of cardinality larger than one (i.e., as punctiform spaces; cf.
Section 1.4), and stated that a space X has Dimensionsgrad less than or
equal to n > 1 if for every pair 4, B of disjoint closed subsets of X there
exists a closed set L = X which cuts X between A and B and has Dimensions-
grad less than or equal to n—1. Brouwer’s notion of dimension is not
equivalent to what we now understand by the dimension of a compact
metric space; however, the two notions coincide in the realm of locally
connected compact metric spaces (the proof is based on the fact that in
this class of spaces the notions of a separator and a cut are equivalent
for closed subsets; cf. Kuratowski [1968], p. 258). Brouwer did not study
the new invariant closely: he only used it to give another proof that I”
and /™ are not homeomorphic if n # m.

Referring to the second part of Lebesgue’s paper [1911], Mazurkiewicz
proved in [1915] that for every continuous parametric representation
of the square 7% on the interval 7, some fibres of f have cardinality at least 3,
and showed that every continuum C <= R? whose interior in R? is empty
can be represented as a continuous image of the Cantor set under a mapping
with fibres of cardinality at most 2. These results led him to define the
dimension of a compact metric space X as the smallest integer n with
the property that the space X can be represented as a continuous image
of a closed subspace of the Cantor set under a mapping f such that | f~*(x)| .
< n+1 for every x e X. As was proved later (cf. Problem 1.7.D), this
definition is equivalent to the definition of the small inductive dimension,
but Mazurkiewicz’s paper had no influence on the development of di-
mension theory.

The definition of the small inductive dimension ind was formulated
by Urysohn in [1922] and by Menger in [1923], both papers contain also
Theorem 1.1.2. Menger and Urysohn, working independently, built the
framework of the dimension theory of compact metric spaces, but Urysohn
was ahead of Menger by a few months and was able to establish a larger
number of basic properties of dimension. Urysohn’s results are presented
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in a two-part paper, [1925] and [1926], published after the author’s death
in 1924, whereas Menger’s results are contained in his papers [1923] and
[1924] and in his book [1928]. A generalization of dimension theory to
separable metric spaces is due to Tumarkin ([1925] and [1926]) and Hu-
rewicz ([1927] and [1927b]). In [1927] Hurewicz, in a particularly successful
way, made use of the inductive character of dimension and greatly simpli-
fied the proofs of some important theorems, e.g., the sum theorem and the
decomposition theorem. Moreover, owing to his discovery of the compacti-
' fication theorem, Hurewicz reduoéd, in a sense, the dimension theory
of separable metric spaces to the dimension theory of compact metric
spaces. =
When the work of Menger and Urysohn drew the attention of mathe-
maticians to the notion of dimension, Brouwer (in [1923], [1924], [1924a)
and [1924b]) ascertained that the definition of his Dimensionsgrad was
marred by a clerical error and that it should read exactly as the definition
of the large inductive dimension (see Section 1.6) and thus should lead
to the same notion of dimension for compact metric spaces; he also com-
mented that even the original faulty definition of Dimensionsgrad could
serve as a basis for an equally good, although different, dimension theory.
Brouwer’s arguments do not seem quite convincing. After the publication
of Menger’s book [1928] a heated discussion arose between Brouwer
([1928]) and Menger ([1929a], [1930], [1933]) concerning priority in de-
fining the notion of dimension; a good account of this discussion is contained
in Freudenthal’s notes in the second volume of Brouwer’s Collected Papers
(Brouwer [1976]). The history of the first years of dimension theory and,
in particular, an evaluation of the contributions of Menger and Urysohn
can be found in Alexandroff [1951].

Problems

L1.A. Observe that a metric space X satisfies the inequality indX
< n > 0 if and only if for every point x € X and each positive number &
there exists a neighbourhood U < X of the point x such that §(U) < &
and indFrU < n—1.

1.1.B. To every regular space X and every point x € X one assigns
the dimension of X at the point x, denoted by ind, X, which is an integer
larger than or equal to 0 or the infinite number oo ; the definition consists



