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PREFACE

The present volume completes the series of texts on algebra
which the author began more than ten years ago. The account
of field theory and Galois theory which we give here is based on
the notions and results of general algebra which appear in our first
volume and on the more elementary parts of the second volume,
dealing with linear algebra. The level of the present work is
roughly the same as that of Volume II.

In preparing this book we have had a number of objectives in
mind. First and foremost has been that of presenting the basic
field theory which is essential for an understanding of modern
algebraic number theory, ring theory, and algebraic geometry.
The parts of the book concerned with this aspect of the subject
are Chapters I, IV, and V dealing respectively with finite dimen-
sional field extensions and Galois theory, general structure theory
of fields, and valuation theory. Also the results of Chapter III on
abelian extensions, although of a somewhat specialized nature,
are of interest in number theory. A second objective of our ac-
count has been to indicate the links between the present theory of
fields and the classical problems which led to its development.
This purpose has been carried out in Chapter II, which gives
Galois” theory of solvability of equations by radicals, and in
Chapter VI, which gives Artin’s application of the theory of real
closed fields to the solution of Hilbert’s problem on positive defi-
nite rational functions. Finally, we have wanted to present the
parts of field theory which are of importance to analysis. Partic-
ularly noteworthy here is the Tarski-Seidenberg decision method
for polynomial equations and inequalities in real closed fields
which we treat in Chapter VI.

As in the case of our other two volumes, the exercises form an
important part of the text. Also we are willing to admit that

quite a few of these are intentionally quite difficult.
vii
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Introduction

In this book we shall assume that the reader is familiar with
the general notions of algebra and the results on fields which
appear in Vol. I, and with the more elementary parts of Vol. II.
In particular, we presuppose a knowledge of the characteristic of
a field, prime field, construction of the field of fractions of a com-
mutative integral domain, construction of simple algebraic and
transcendental extensions of a field. These ideas appear in
Chaps. II and III of Vol. I.  We shall need also the elementary
factorization theory of Chap. IV. From Vol. II we require the
basic notions of vector space over a field, dimensionality, linear
transformation, linear function, compositions of linear trans-
formations, bilinear form. On the other hand, the deeper results
on canonical forms of linear transformations and bilinear forms
will not be needed.

In this Introduction we shall re-do some things we have done
before. Our motivation for this is twofold. In the first place,
it will be useful for the applications that we shall make to sharpen
some of the earlier results. In the second place, it will be con-
venient to list for easy reference some of the results that will be
used frequently in the sequel. The topics that we shall treat
here are: extension of homomorphisms (cf. Vol. I, Chap. III),
algebras (Vol. II, Chap. VII), and tensor products * of vector
spaces and algebras (Vol. II, Chap. VII). The notion of extension
of homomorphism is one of the main tools in the theory of fields.
The concept of an algebra arises naturally when one studies a
field relative to a selected subfield as base field. The concept of
tensor product is of lesser importance in field theory and it per-

*In Vol. II this notion was called the Kronecker product. Current usage favors the
term tensor product, so we shall adopt this in the present volume. Also we shall use the
currently standard notation ® for the X of Vol. II.

1



2 INTRODUCTION

haps could be avoided altogether. However, this notion has
attained enormous importance throughout algebra and algebraic
topology in recent years. For this broader reason it is a good
idea for the student to become adept in handling tensor products,
and we shall use these freely when it seems appropriate.

1. Extension of homomorphisms. Throughout this book we
shall adopt the convention that the rings we consider all have
identity elements 1 ¢ 0. The term subring will therefore mean
subring in the old sense (as in Vol. I) containing 1, and by a
homomorphism of a ring % into a ring 8 we shall understand a
homomorphism in the old sense sending the 1 of % into the 1 of 8.

Now let o be a subring of a field P and let ® be the subfield of P
generated by o. We recall that- the elements of & can be ex-
pressed as simple fractions af™! of elements a, 8 € o (8 = 0).
Hence ® is the subring of P generated by o and the inverses of
the elements of the set o* of non-zero elements of 0. The set o*
contains 1 and is closed under the multiplication of 0. It is some-
times useful to generalize this situation in the following way: We
are given a subring o of P and a subset M of o* containing 1 and
closed under multiplication. We shall refer to such a subset as a
sub-semigroup of the multiplicative group of the field. We are
interested in the subring oy generated by o and the inverses of
the elements of M. For example, we could take P to be the field
Ry of rational numbers and M = {2*|k = 0,1,2,---}. Then
oy is the subring of rational numbers whose denominators are
powers of 2. In the general case,

ou = {af ™ |aeo, BeM};
for, if we denote the set on the right-hand side of this equation by
o', then clearly o’ C oy and o’ contains 0 = {a = al~!}. Also
o’ contains every 87! = 187! for Be M. One checks directly
that o’ is a subring of P. Then it follows that o’ = oy.

Now suppose P’ is a second field and we have a homomorphism
s of o into P’ such that 8* > 0 for every 8 e M. Our first homo-
morphism extension theorem concerns this situation. This is the
following result.

L Let 0 be a subring (with 1) of a field P, M a subset of non-zero
elements of o containing 1 and closed under multiplication, oy the
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subring of P generated by o and the inverses of the elements of M.
Let s be a homomorphism of o into a field P’ such that B* # O for
every Be M. Then s has a unique extension to a homomorphism
S of oy into P'. Moreover, § is an isomorphism if and only if s
15 an isomorphism.

Proof. Let ayf8,7' = az8:7', a;eo0, ;e M. Then a8, =
azf, and consequently a8’ = a,°8;°. This relation in P’ gives
a;*(8,°) 7! = @,*(8:*) "'. Hence the mapping

S:af™! - a*(B*)”), aeo, BeM

which is defined on the whole of oy = {@B™!} is single-valued.
One checks that § is a homomorphism (Vol. I, p. 92). If a e o,
then o = (a1l ™1)5 = o’1® = o?, 50§ is the same as s on 0. Hence
§ is a homomorphism of oy which extends the given homomor-
phism of 0. Now let §” be any such extension. Then the relation
B8~ =1 for BeM gives B (B~1)S =1, so (B~1)S = (85) 1.
If aeo, then we have (af7V)% = ¥ (B%)"! = (8" ! =
(aB~)5. Hence §' = § and § is unique. Clearly, if § is an iso-
morphism, then its restriction 5 to o is an isomorphism. Now
assume s is an isomorphism and let o8 ~! be in the kernel of the
homomorphism §: 0 = (=) = o*(8*)~'. Thena® =0, a = 0,
and af™! = 0. This shows that the kernel of § is 0; hence § is an
isomorphism.

We consider next an arbitrary commutative ring 9 and the
polynomial ring %[x], » an element which is transcendental rela-
tive to ¥ (Vol. I, p. 93). The elements of %A[x] have the form
ayp + ayx + axx* +- - -+ a,x™ where the g;¢ % and 2o + a;x +
-+++ a.,x™ = 0 only if all the a;, = 0. We now have the follow-
ing homomorphism theorem.

I Let A be a commutative ring, A[x] the polynomial ring over %
in a transcendental element x and let s be a homomorphism of U into
a commutative ring B. If u is any element of B there exists a unique
homomorphism S of Ulx] into B such that: a° = a*, ae ¥, x5 = u.

The reader is referred to Vol. I, p. 97, for the proof. This result
has an immediate extension to a polynomial ring A[xy, x, - - -, %,]
where the x; are algebraically independent elements. We recall
that the algebraic independence of the x; means the following:
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If (m1, mg, - - -, m,) is an r-tuple of non-negative integers m;, then
a relation 3 Gmy..mpi™ %™ =0, Gp...m e ¥, can hold

mi

only if every @m,...m, = 0. From now on we shall refer to ele-
ments x; which belong to a commutative ring and are algebraically
independent relative to a subring ¥ as indeterminates (relative to
). Then we have

II1. Let Alxy, -+, x,] be a commutative polynomial ring in x;
which are indeterminates (relative to N) and let s be a homomorphism
of U into a commutative ring B. If ui, uy, -+ -, u, are arbitrary
elements of B, then there exists a unique homomorphism S of Alxy]
into B suchthat 1) a® = a*,ae W;2) xS = uyyi = 1,2, -+, 1.

We now suppose we have a commutative ring €, % a subring,
s a homomorphism of ¥ into another commutative ring 8. Let
t, ta, - -+, t, be elements of € and let A[ty, #5, - - -, #,] be the sub-
ring of € generated by % and the #;,, Under what conditions can
s be extended to a homomorphism § of UA[t] = Ay, 42, -+, 8]
into B so that #% = u;, 1 <7 <r, where thc u; are prescribed
elements of 8? The answer to this basic question is

IV. Let B and € be commutative rings, N a subring of G, 5 a
homomorphism of U into B. Letty, - - -, ¢, be elements of G, uy, - - -,
uy elements of B. Then there exists a homomorphism § of Alty, - - -,
) into B such that % = @', aeNand t5 = u; i = 1,2, -+, 1, if
and only ‘if for every polynomial f(xy, - - -, x,) € UAx,], x; indeter-
minates, such that f(t1,---,t,) =0 we have f(uy, -+, u,) = 0.
Here f*(%1, - - -, %,) is obtained by applying s to the coefficients of
Sy, -y %,). If S exists, it is unique.

Proof. The set & of polynomials f(x;, ---,#,) such that
S, -5 4;) = 0 is the kernel of the homomorphism A(xy, - - -, x,)
— Aty -+, ¢,) of Ax,] into Ar,]. Hence we have the isomor-
phism 741, - -, 4,) — A(xy, -+ -, %,) + & of ¥z onto the dif-
ference ring [x,]/R®. Next we consider the homomorphism A(x;,
ceeyXn) = B(uy, - -+, u,) of Ax into B (cf. III). Assume that
f(uy, -+, u,) = 0 for every feR. Then every fe® is mapped
into 0 by the homomorphism A(xy, - - -, x,) — A* (uy, -+, #,) so
® is contained in the kernel of this homomorphism. It follows
(Vol. I, p. 70) that we have the homomorphism A(xy, - - -, %) +
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f — A(uy, -+, u,) of UAx;]/® into B. Combining this with the
isomorphism 7 we obtain the homomorphism

(1) Sth(ty, oy b)) = By, ooy ur)

of Ult;) into B. This is the required extension of 5. If 8" is any
extension of s to a homomorphism of %[#;] into B such that 2% =
a®*and % = u, then h(ty, - -, 4,)5" = A*(uy, ---, u,); hence §’ =
§ and § is unique. Also, it is trivial that, if f(4, ---,4) =0,
then 0 = f(ty, -+, 4)% = f*(uy, -+, u,) if § is a homomorphism
of Alt, - - -, 4] satisfying our conditions.. Hence it is clear that
the condition stated in the theorem is necessary for the existence
of the extension §.

We have noted in the proof that the set & of polynomials
S(x1, -+ -, %,) such that f(#;, ---,¢,) = 0 is the kernel of a homo-
morphism. Hence this is an ideal in the -polynomial ring Ufx;, x5,
-+, %], Now let X = {g} be a set of generators of : X C ®
and every element f ¢ ® has the form Za;(x;, - - -, x.)gi(xy, + -+, %)
where the a; (xy, - - -, x,) € Ulxy, xo, - - -, x,] and the gy(xy, -+ -, %,)
e X. Itis clear that, if g*(uy, - - -, #,) = 0 holds for every g e X,
then also f*(uy, - -+, u,) = Oforevery fef®. Hence we can obtain
from IV the following result which is often easier to apply than
IV itself:

IV.. Let B and G be commutative rings, A a subring of €, and s
a homomorphism of N into B. Let X be a set of generators of the
ideal 8 of polynomials f in U[xy, xq, - - -, x,], %; indeterminates, such
that f(ti, ts, - -, 4,) = 0. Then there exists a homomorphism § of
Ulty, tay -5 4] into B such that a° = a*, ae¥, and 15 = u,
1 <i <r,if and only if g*(uy, -+, u,) = O for every ge X. If S
exists, then it is unique.

We now consider the important special case of IV’ in which
% = @ a field and » = 1. Then we know that ®[x] is a principal
ideal domain (Vol. 1, p. 100). Hence the ideal & = (f(x)), where
(f(x)) denotes the ideal of polynomial multiples of the poly-
nomial f(x) eR. It is clear that & s (1) = &[] since, otherwise,
0 = ®[x]/® = &[] 2% which contradicts 13 0. Since (a)
= (1) if ais a non-zero element of &, it is clear that the possibili-
ties for @ are ® = (0) or & = (f(x)) where f(») is a non-zero poly-
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nomial in ®[x] of positive degree. In the first case we have ®[x]
= ®[/] and ¢ is transcendental. Then II (or IV) is applicable and
shows that s can be extended to a homomorphism § sending ¢
into any # € 8. Now suppose that f(x) #£ 0. In this case we
call the element ¢ € € algebraic over ® since we have a non-zero
polynomial f(x) such that f(#) = 0. The ideal 8 is, by definition,
the set of polynomials g(x) such that g(/) = 0. The polynomial
Sf(x) is a polynomial of least degree in & and every other poly-
nomial contained in ® = (f(x)) has the form g(x) f(x). We can
normalize f(x) by multiplying it by the inverse of its leading
coefficient to obtain a polynomial with leading coefficient 1. If
we let f(x) be this polynomial, then clearly f can be characterized
by the properties that it is the polynomial of least degree belong-
ing to $[x] with leading coefficient 1 satisfying /() = 0. We shall
call f(x) the minimum polynomial (ver ®) of the algebraic element
te€. We can now state the following result which is a special
case of IV’ -

V. Let B and § be commutative rings, ® a subfield of G, t an ele-
ment of € which is algebraic over ®, and s an isomorphism of ® into B:

c2alf2e
\

Then s can be extended to a homomorphism S of ®[f] into B so that
8 = u, if and only if f*(u) = O for the minimum polynomial f(x)
of t over ®. When the extension exists it is unique.

Remarks. The condition one has to put on # to insure the
existence of § can be stated also in the following way: « is alge-
braic over the image $* of ® and its minimum polynomial over
®* is a factor of f*(x). The equation (1) giving the form of §
now becomes

) $:8(1) — g*(u).

It is immediate from this that § is an isomorphism if and only if
JS'(x) is the minimum polynomial of .
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2. Algebras. We recall the definition of an algebra 9 over a
field @ (Vol. II, p. 36 and p. 225): % is a vector space over ® in
which a product xy e ¥ is defined for x, y in % such that

5 (*1 + x2)y = %1y + %2y, *(1 +y2) = 1 + xy,
®) a(xy) = (ax)y = x(ay), acd.

We shall be interested only in algebras which have identities 1 and
which are associative; hence in this volume “algebra” will always
mean just this.

We shall usually encounter algebras in the following way: We
are given a ring ¥ and a subfield ® of the center of . Then
we can consider ¥ as a vector space over ® by taking ax, a e ®,
x ¢ ¥, to be the ring product of @ and x in %. Clearly this makes
% a vector space over ®. Also (3) is clear since « is in the center.
Hence we have an algebra %/® (% over ®).* This procedure for
defining an algebra will be used in studying a field P relative to a
subfield ®. Then we obtain the algebra P/®.

Another algebra which is basic is the algebra 2,( M) of linear
transformations of a vector space M over a field ®. Here 4 + B,
AB and aA for A, B ¢ 2,(M) and a € ® are defined by (4 + B)
= x4 + xB, %(4B) = (xA4)B, x(ad) = a(xA4) = (ax)A. The
dimensionality [Rs( M) :®] of Lu( M) over @ is finite if and only
if [D0:®] is finite. If [ M:®] = m, then [2(M):8] = m? (Vol. II,
p- 41).

Evidently an algebra is a ring relative to the + of the vector
space and the multiplication a4. A subalgebra B of an algebra %
over & is a subspace of % which is also a subring. An ideal of
/@ is a subspace which is an ideal of % as a ring. A komomorphism
s of the algebra %/® into the algebra 8/ is a mapping of ¥ into
B which is ®-linear and a ring homomorphism. Isomorphisms
and automorphisms are defined in a similar fashion. If & is an
ideal in %/®, then the factor space %/R is an algebra over & rela-
tive to its vector space compositions and the multiplication
(@ +R)(%+8) = ab + 8. We have the algebra homomorphism
@ — a + & of 9/ onto U/® over . If 5 is a homomorphism of
%/® into B/®, then the image A’ is a subalgebra of B and the

* We shall use the notation 9/ also for the difference ring of ¥ relative to the ideal B-
Which of these meanings is intended will always be clear from the context.
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kernel ® of 5 is an ideal in . We have the isomorphism s + 8 —
a* of A/ onto A*. The basic results on ring homomorphisms ex-
tend to algebras and we shall use these without comment.

We shall now record some elementary results on finite dimen-
stonal algebras which will be used frequently in the sequel. The
first concerns a dimensionality relation for %/® and %/E, where
E is a subfield of . Evidently if E is a subfield of ®, then we can
restrict the multiplication ax, a e®, x ¢ % to @ in E. This turns
% into an algebra %A over E. Also since E is a subfield of & we
can define the algebra ®/E. We now have

VL. Let ¥ be an algebra over ®, E a subfield of ®. Suppose [A:d] <
© and [P:E] < . Then

(4) [A:E] = [A:®][®: E].

Proof. Let (4:),1 < i < n,beabasis for %/®, (v;),1 <j <m,
a basis for /E. Then (4) will follow if we can show that (y;x.)

n
is a basis for A/E. First let ae ¥. Then 2 = X cus, ase®,
1
m
and a; = 3 e;v; where e;;¢ E. Then 4 =Ze;v;u; is a linear
=1
combination of the elements vy;u; with coefficients ¢; in E. Now
suppose Ze;v;u; = 0 where the ¢;; ¢ E. Then we have Za,u; = 0

for a; = ) e;v;in®. Since the u; are ®-independent, this gives

7
a;=0,1 <7 <n Then the formulas a; = Z¢;7y; and the E-
independence of the v; give ¢; = 0 for all 7, 5. This proves that
the elements y;u; are E-independent and so these form a basis
for %A/ E.

VIL. Let U be a finite dimensional algebra over a field ®. Then U
15 a division ring if and only if U is an integral domain.

Proof. We know that division rings are integral domains (Vol.
I, p. 54). Now suppose ¥ is an integral domain and let & be any
non-zero element of %. Consider the right multiplication ag:
x — xa determined by 4. This is a linear transformation in %/
and, since 4a = 0 in % implies 4 = 0, the null space of ag is 0.
It follows that ag is surjective (that is, maps ¥ onto ). Hence
there exists an element &’ such that 4’2 = 2’az = 1. Thus 4
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has a left inverse. A similar argument using the left multiplica-
tion a;, shows that @ has a right inverse. Hence every non-zero
element of ¥ is a unit and %A is a division ring.

We consider next algebras % = ®[/] which have a single genera-
tor ¢ (cf. §1). We have the homomorphism g(x) — g(#) of
®[x], x an indeterminate, onto A. If ® is the kernel, then ¥ =~
®[x]/R. Also we have seenin § 1 that® = (f(x)) where f(x) =0
or is a non-zero polynomial with leading coefficient 1. In the
first case, # is transcendental and the homomorphism we indicated
is an isomorphism. In the second case, ¢ is algebraic and f(x) is
its minimum polynomial. Then we have

VIIL. Let A = ®[f] be an algebra over & gemerated by a single
algebraic element t whose minimum polynomial is f(x). Then

(5) (A:8] = deg f(x),

the degree of f(x).

Proof. Letn = degf(x). Then we assert that (1,4, ---, 1)
is a basis for %/®. Thus let 4 be any element of % = ®[f]. This
has the form g(#), g(x) in ®[x]. By the division process in ${x]
we can write g(x) = f(x)g(x) + r(x) where degr(x) < deg f(x).
Then if we apply the homomorphism of ®[x]/® onto &[¢]/® send-
ing x into ¢, we obtain @ = g(#) = 0g(¥) + r(#). Since deg r(x) <
n, this shows that @ = r(!) is a ®-linear combination of 1,¢, - - -,
71 Next we note that 1,4, -, /"~ are linearly independent
over & since otherwise we would have a polynomial g(x) = 0 of
degree < 7 such that g(#) = 0. This contradicts the hypothesis
that f(x) is the minimum polynomial. Hence (1,4, ---, 7"V isa
basis and (5) holds.

We recall that ®[f] = ®[x}/(f(x)), f(x) a polynomial of positive
degree, is a field if and only if f(x) is irreducible (Vol. I, p- 101).
Otherwise, ®[#] is not an integral domain. It is useful to have a
more complete analysis of the structure of ®[f] in terms of the
minimum polynomial f(x). We shall indicate the results in the
following exercises.

EXERCISES

1. An algebra ¥ is a direct sum of ideals U; if U is a vector space direct sum of
the subspaces M;. Let A = &[4], ¢ algebraic with minimum polynomial f(x).



