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Preface

Algebra is not only a part of mathematics; it also plays within mathe-
matics the role which mathematics itself played for a long time with respect
to physics. What does the algebraist have to offer to other mathematicians?
Occasionally, the solution of a specific problem; but mostly a language
in which to express mathematical facts and a variety of patterns of reason-
ing, put in a standard form. Algebra is not an end in itself; it has to listen
to outside demands issued from various parts of mathematics. This situation
is of great benefit to algebra: for, a science, or a part of a science, which
exists in view of its own problems only is always in danger of falling into
a peaceful slumber and from there into a quiet death. But, in order to take
full advantage of this state of affairs, the algebraist must have sensitive
ears and the ability o derive profit from what he perceives is going on
outside his own domain, Mathematics is changing constantly, and algebra
must reflect these changes if it wants to stay alive. This explains the fact
that algebra is one of the most rapidly changing parts of mathematics: it
is sensitive not only to what happens inside its own boundaries, but also
to the trends which originate in all other branches of mathematics.

This book represents an attempt to adapt the teaching of algebra to
at least a part of what present day mathematics requires. The most import-
ant new demands on algebra come from topology, analysis, and algebraic
geometry. These demands are of various kinds; but to all of them the
general notion of a module seems to be absolutely essential. This is why
the theory of modules occupies such an important place in this book.
The concept of a module unites and generalizes those of an additive group
and of a vector space; it differs from them by the generality which is allowed
for the domain of operators, which may be an arbitrary ring instead of
the ring of integers (in additive groups) or a field (in vector spaces). This
generality is not there for its own merits, but because it is actually needed
in many cases. The operations from the general theory of modules which
are considered here are essentially the construction of the group of linear
mappings of a module into another one and the construction of the tensor
product of two modules. These concepts are not, by far, the only useful
ones; but we believe that they contain “what everybody must know” from
the theory of modules. The last part of the book is concerned with the
theory of algebras and mostly of exterior algebras; the latter have become
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essential to analysts because of the frequent use they make of the calculus
of differential forms. v

We are far from even hinting that this book represents a complete survey
of those parts of algebra whose knowledge is essential to contemporary
mathematicians; the most glaring lacuna is that of field theory, which is
rot touched on in this book. The principle which has presided over our
choice of material is that it is better to acquire a complete familiatity
with a few fundamental nctions than to have a superficiai knowledge of
many. The contents of this book (with a few omissions) have been taught
" by the author in a one year first graduate course in algebra; we think
that it would be impossible' to cram any more matter into the program
of such a course without destroying its usefvlness. The presentation of
the material will perhaps incur the reproach of being too dogmatic in its
methods. To this possible objection, we would like to make two answers.
Firstly that what the student may learn here is not designed to help him
with problems he has already met but with those he will have to cope
with in the future; it is therefore impossible to motivate the definitions
and theorems by applications of which the reader does not know the
existence as yet. Secondly, that one of the important pedagogical problems
which a leacher of beginners in mathematics has to solve is to impart
to his students the technique of rigorous mathematical reasoning; this is
an exercise in rectitude of thought, of which it would be futile to disguise
the austerity. '

Paris, June 1956. CLAUDE CHEVALLEY.



coPYRIGHT ©), 1956, BY

ACADEMIC PRESS INC.
111 FIFTH AVENUE
NEW YORK 3, N. Y.

ALL RIGHTS RESERVED.

NO PART OF THIS BOOK MAY BE !\EPEODUCED IN ANY FORM,
BY PHOTOSTAT, MICROFILM, OR ANY OTHER MEANS,
WITHOUT WRITTEN PERMISSION FROM THE PUBLISHERS.

LIBRARY OF CONGRESS CATALOG CARD NUMBER:
56-8682

PRINTED IN UNITED STATES OF AMERICA

¢ .



Contents

Preface ....... Ceeeanaeas s et eeeeratvecrreserartiaeencsnaase
Prerequisite knowledge and terminological conventions ............

CHAPTER 1. Momofds ...... ... 0 iieiiiininererrneareronncnoenne
1. Definition of amonoid ............cc0ivtiiiiiiiaaann.
2. Submoenoids. Generators ......... Cieeraneneettestanraas
3. HomomorphiSms .........coiiniiiniiieriiiieinnisnonss
4, Quotient monoids . ..... ... i it i i
B Products . ... ... it i i et [P
6. Free monoids .......ccvevenenronnonaas Cetstiasasanas .
Exercises .................. s sssecacer st raanscenanssnan

Cmu’n.n IL @Groups .......onvvnvnnns Qeeeenonn tseesrracens e

SUDEIOUDPS v i i i i i i i it i e e >
Homomorphisms. Quotient groups ..................... .
. Groups operating on a set ................ v, RN
. Products of groups.............oiiiiiiiiiiiiiiiaenaa
Free groups .................. e iraitissiereasareesas

O gk

F\:erclses ............................................... .

CuarTER III. Rings and modules ..... e eaeans o terecbrerenees
.Rings........oiiiiiiiln U F
. Field of quotients.....................ooiiiiiinnnt .
3o Modules. ... i it s e e e erereraes
4, SubMOAUIES . ...t i it ittt rareaas
5. Linear mappings ..... e teeraeis ety
6. Products ......... . ... i i i i it e,
7
8
9

o =

. Uniqueness theorems for semi-simple modules....... ceeve

. Tensor products of modules.....................0 e .

. Free modules. Bages .............ciiinnieccrncnanenns
10. Muiltilinear mappings ...................... teremreneans
11, Transfer of basic rings ........................ eemeans
12, Vector Spaces .....vovvvavraesnsos Cevesieneann
13. Veclor spaces in duality ....................cieininn,
14. The rank of a linear mapping ................ e
15. Matrices. . ... ... it it i i et it
16. Systems of lnear equations .................cco0vvunnn.
17. Graded modules ........ ... . i i it i
€ 0 1 P

CHAPTER TV. AlQoDrRE ... .oiieitrvvertnnsreoornonresesnnanns .
L Deflnition . ... vttt it i i ierieiniianans
2. Subalgebras ............ Bttt iieree it naas

v

Definition of @ group ........cceiiieiiaiiiiataaanenans »



vi CONTENTS

3. Homomorphisms ......c....ocieiiiinninriinannineeiinns 139
4. Products ...t wereeeeree e 140
5. Free algebra.. ... ... ... . . i iuiiiiiirraniennnnannn 141
Exercises ........ ... i i e 143
CHAPTER V. Associative algebras ........ e s et 145
L. Definftions ........ ... ... i i i 145
2. Graded algebras ............ccciiiiiiiii it 149
3. Tensor algebras .............cvvvevun. feeihereeseaanes 151
4. Tensor products of graded algebras ..................... 154
5. Anticommutative algebras ..................... ... 158
6. Derivations .................... D 162
7. Exterior algebras ............. .. ... i, 165
8. Grassmann algebras .................cociiiiiiiiian.., 170
9. The determinant of a matrix .......................... . 176
10. Some applications of determinants...................... 182
11, Existence of certain derivations ........................ 187
12. The trace of a matrix........... e iiesrarenaeres ceese. 192
13. Alternating multilinear mappings . ...................... 193
14. The Pfaffian of an alternating bilinear form............. 194
15. Exterior algebras on vector spaces ..............c...... 200
16. Transfer of the basic ring ...... Seteceeerescecaanrenaas 204
17. Commutative tensor products ....... beeennnas fereeeaes 211
18. Symmetric algebras .............c.iiiiiiiiiiiiiniean. . 213
19. Polynomial algebras ...................cooiiiii.,... 221
EXercises ........oiuiiiiii i e e 228
T, 238



Prerequisite Knowledge
and Terminological Gonventions

“The reader will be assumed to be familiar with the general principles
of set theory, including Zorn’s lemma, which will be used in the following
form. Let E be a set and S a set of subsets of E. Assume that for any
subset S’ of S with the property that, for any two sets X and Y belonging
to §’, one is contained in the other, there exists a set in § which contains
all sets in §'; then every set in S is contained in some maximal set X
of S (i. e. in a set X such that the only set in S which contains X is X
itself). From the theory of cardinals, we require the following results:
to every set I there is associated an object card 7,in such a way that a
necessary and sufficient condition for / and I’ to be equipotent is that card 7
== card I’; there is an order relation among the cardinals such that card J
< card I’ if and only if  is equipotent to u subset of I; if to every element
i of an infinite set ] thereis associated a finite subset F;of a set I, and if every
element of I' belongs to at least one-of the sets F,, then card I' < card /.
A mapping f of a set A into a set B is called injective if the condition
. as%a' (where a, a’ are in A) implies f(a) = [(a'); { is called surjective if,
for any b in B, there exists.at least one a in A such that f{a) = &; a mapping
which is both injective and surjective is called bijective. An injective
(resp.: surjective, bijective) mapping is also called an injection (resp.:
surjection, bijection). A mapping of a set I into a set A is-also called a
family of elements of A indexed by I; if this terminology is used, then
the image under the mapping of an element i is generally denoted by £
(instead of the usual notation f(i)); the mapping itself is often denoted
by (fher :

The ;t of all integers (positive, null or negative) will always be denoted
by Z. if m is an integer > 0O, the factor group Z/mZ (to be defined in-
chapter II) will be denoted by Z.. A family of elements of a set A which
is indexed by the set, of integers > 0 will be called a sequence of elements
of A; a family of elements of A which is indexed by the set of all integers
> 0 which are at most equal to an integer n will be called a finite sequence
(of length n).of elements of A. Such a sequence will often be denoted by
(@ <icw OF by (@, -+, a,). The elements a; are called the terms of the
sequence. ' §

The formula a & A will mean that a is an element of the set A. The empty
set will be denoted by 9. If a is an object, then the set whose unique element
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2 PREREQUISITES AND TERMINOLOGY

is a is denoted by | a {. If (a1, .-+, ax) is 2. finite sequcnce, the set whose
elements are aj, - - -, @ will be denoted by ! @y, -+, @ {3 if @, b are objects,
‘a, b ( denotes the set whose elements are a, b. The notation A ¢ B means
that every element of A is an ¢lement of B; this does not exclude the possi-
bility that 4 = B. If A and B are sets, A U B represents the set whose
elements are all objects which are elements either of A or of B (the union
of A and B); A n B represents the set of elements which belong to Loth
A and B (the intersection of A 2nd B). If q, I are objects, the finite sequence
of length 2 which maps 1 upen a and 2 upon b is called the pair (a, b).
If A and B are sets, the set of all pairs (a, b) such that ae A and beB
is called the (Cartesian) product of A and B, and is dendted by A x B.
Let (A);c; be a lamily of sets. The union of these sets (i. e. the set
of clements a such that there exists an i e I for which ae A;) is denoted
by U, A, The intersection of the sets A (i. e. the set of elements a

such that ae A, for every ie I) is denoted by N,c;A;. The product of
the sets A; (i e. the set of families (a);¢,, indexed by I, such that q;e 4;"
for every i e J) is denoted by IT,_,4,. [f(4,, .-, A,) isa finite sequence of
sets, the union of the sets A; is alsc denoted by 4;u --- U 4,, their inter-
section by Ain --- n A, and their product by 4, X --- X 4,.

Let f be a mapping of a set A into a set B. If XcA then the set of
elements b such that there exists an x such that xe X and f(z) ==b is
denoted by f(X). If (X)), ¢, is a family of subsets of A, then

(Uie:X) = Uil (X).
 HYisa .mbset1 of B, the set of elements a such that ae A and f(9)& Y
is denoted by f(Y). If (Y,);q, is a family of subsets of B, thea we have

-1 -1 - -,
I(Uielyi) = Uie’l’(Yi) and /(n¢e1Y¢) = ntel/(Yi)'
If g is a mapping of B into a set C, then the mapping of 4 into C which
assigns g(f(a)) to every a e A is denoted by go/. If fisa bijection, then the
mapping of B into A which maps any element b of B upon the unique
element a of A such that f(a) = b is 'denoted by f If E(a) is an expression
involving a letter @ and which has a meaning whenever a stands for an
element of a set A, then a — E(a) represenis the mapping which assigns
«to every element a of 4 the value of the expression E(a). If (Aj)g; is a
family of sets and j an element of I, then the mapping of 1L, ¢4, into
A; which assigns aq; to any element (), .; of I1;q,4; is called the j-th
pmjectmn or, if there is no danger of confusion, the projection on A;



CuaPTER T

Monoids

1. Definition of a monoid

An infernal law of composz!wn or. law of composrilon onasetdisa
mapping of A x A into A, i. e. a mapping which assigns to every ordered
pair (a, b) of elements of A an element ¢ of A, called their composile.

Wesshall have to consider a great variety of laws of composiiion. However
we shall have only three notations for the composite of a and b: either
a -+ b, ab, or aob. If the composite is denoted by a + b, then it is called
the sum of a and b, and we say that we have an additive law of composi-
tion. If the composite is denoted by ab or ac b, then it is called the product -
of ¢ and b, and we say that we have a multiplicative law of composition.
However, in the beginning of this discussion, we shall not make any dis-
tinction between additive and multiplicative laws of composition; therefore,
we shall use the notation asb for a composite, which may be either a sum
or a product,

A law of composxtlon = on the set A is called associafive if it is true that

(axb)re = az(bsc)
foralla, b, cin A. :

ExamrLEs: @) A is the set Z of integers, and « stands either for addition
or multiplication: + is then associative.

b) Let S be any set and A the set of all mappings of § into itself, with
the law of composition (f, g)-» fog (where (fo g)(x) = f(g()) for any
ze S). This law of composxtmn is associative, for if f, g, h arein A,

then
(fe9)- h)(x) (f o P(1()) == [(9(N(x)))
(f = (g = H)(x) = [((g = h)(x)) = (g(h(x}))

for any z e S, which proves our assertion.

c¢) In the set of integers, subtraction, i. e. the law of composition
(a, b) > a - b, is not associative.

An element e is called a neufral element for a law of composxtxon zin A

if we have
are==¢a—=da
forallae A.

.



4 1. MONOIDS

ExampLEs: ) In the set of integers, 0 is a neutral element for addition
and 1 a neutral element for multiplication.

b) In the law of composition of example b) above, the identity mapping
¢ (1. e. the mapping x -» ) is a neutral element.

¢) We have, for any integer a. a- 0==a but, in general, 0-a = ¢:
thus 0 is'not a neutral element for subtraction. It is easy to see that there
does not exist any neutral element for subtraction.

Theorem 1. If there is a neutral element fcr a law of composition « in A,
there is only one.

Assume that ¢ and e’ are neutral elemeuts. Then we have erve’ == ¢/ but
also ere’ == ¢, whence e =¢'.

The neutral element for an additive law of composition is always denoted
by 0; the neutral element for a multiplicative law of composition is most
often denoted by 1.

A monoid is a set A which has a law of composition that is associative
and has a neutral element.

In what follows, unless ortherwise staled, A shall denote a monoid, in which
the law of compesition is denoled by =.

Composite of finite sequences. Let (ay, - - -, az) be a finite sequence of ele-
ments of A; we shall then define the composite, a1 - - - za,, of this sequence
in the following inductive manner. If the sequence is the empty sequence
(n==0), then the composite is by definition the neutral element e. If
n> 0 and if the composites of sequences of less than a terms are
already defined, then we define a1z - - » a, by

AT - - Ty == {@az - - - 1a,.,_1)ra,,,_

ExampLEs: The composite of a sequence () of a single term is this
term a. We have arbre = (arb):c, arb:crd = (asb:c):d = ((arb)=c)~d.

For an additive law of composition, the composite of (ay, - - -, a,) is de-
noted by X}_,a,; for a multiplicative law of composition, by II}_, a,. There
are many variations in the notational conventions, with which the reader
will familiarize himself by usage. Examples:

? .

iag = Oy T 0; + g + Gy
: 4G=a 2o, = 0, et
i=-3,{0dd 3t Gy a4+ ay + a5 2ya = 0, ete.

Theorem 2. (General assomatmty theorem) Let (a1, - « -, an) be asequence
of elements of A, Let kg, «--, ky be znlegers suchthat 1 =k <(--- < ks <0,

Let b, = a7L By by = ety o0, by = a3 - va,. Then we
have a1z -+ . 10, = bn' <l
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ExaMmpLES: (case n=4). We have
azbrerd = aw(bxe):d = ar(brcrd) == atbr(crd) = (arb)rcrd = (axbye(c-d) == etc.
Proof. We proceed by induction on n. If n==0, then, necessarily,

h =0, and both sides are equal to the neutral element. Assume that n => 0
and that the theorem is true for sequences of at most n — 1 terms.

Case 1. Assume first that ky == n, whence b; = a,. We have, by definition,
@ - Ty == (@17 - - - Ta@z1)*ae. By the inductive assumption. we have
ayT - - - Wpy = b1z - - - 2by1, whence

arv -ty = (byt- - tha-a)vba = b7 - - - by

Case 2. Assume now that &y << n. We have byt - thy = (bie- - - tbp.1)<bs.
Let b, = @, - -« =a,_,, whence b, = b;ra,. Then we have, using the assumed
associativity of the law of composition ,

biv.--thy= (b1‘t - 2by-a)t(bizas)
= ((brr-- tb],_l)rb;,)rqn = (b= - - - thyathi)sdn.
But we have ait--: <@n-1 = b7 - - - thy_17hs by our inductive assumption,
whence b7 -+« thy == (@17 - - - %Gp-1)1@y = @1% - - - 2aqx. This concludes the procf,
Consider now the case where aj, - - -, @, are all equal to one and the same
element a. Then the composite of the sequence (a, - - -, @) is denoted by
na if the law of composition is additive, by a~ xf the law of composition is

multiplicative.
Let m and n be non-negative integers, and @ an element of A. If the law

of composition is additive, then we have
(1) 0a=0, la=a, (m + n)a= ma + na, (Mn)a= m(na):
,if the law of composition is multiplicative, we have
) ®=1, al==a, a™r=grar, a™ = (a")"
These formulas follow easily from the definitions and from the general
associativity theorem.

Commutative monoids. The monoid A is called commutafive or Abelian
if we have asb = b=a for any elements a and b of A.

ExamrLes: a) The set Z of integers is a commutative monoid under both
addition and multiplication.

b) Let R be the set of real numbers, and A the set of mappings of R into
itself. Denote by f the mapping £ — x + | and by g the mapping z —» 2%
Then (/c pE)=*+ 1, (@ H@=2a+2r + 1; thus, the law of compo-
sition o in A is not commutative.
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Theorem 3. (general commutativity theorem). Let A be a commutative
monoid, (@, - - -, aa) @ finite sequence of clements of A and » any permulation
of the set} 1,---, n{. Then we have '

ExampLES: We have
athte = avcth = brazc = brera = cratb == czbra.

Proof. We proceed by induction on n. There is nothing to prove if n == 0.
Assume that n>>0 and that the statement is true for sequences of
n -1 terms.

Case 1. Consider first the cése where w(n)==n. Then we have, by the
inductive assumption, @y - - - ¢, ; = g7+ + 2 @y, Thus,

@, = (a7 tq, ,)a, == (an(l)'c'- .. ram(n_l))ram(ﬂ)
= lgy® Ml )

Case 2. Assume now that w(n) < n. Let k be the integer such that
w(k) = n. Then we have

UnyT * *° g = (‘Im(i)T e Tam(k—l)-)T(am(})T(am(k+1)1'. e ‘-'am(,.p\’),
and this is equal to ’

CSPILERER MY . (SO SRR Ty ) Ty} == Uy )T Ty
where we have set w'(]) = w(() if i < k-1, 0'(f) = w(i + 1)if k<i < n-1,
w'(n) = w(k) = n. But »’ is again a permutation of ! 1,..., n{, and, this
time, w'(n) = n. Thus ag )7+ - - <@y == @17 - - - 72, by care 1. This complete
the proof.

Assume that we have a commutative monoid where the law of compo-
sition is additive. Let I be any finite set, and i > a; a mapping of Iinto A.
If n is the number of elements of I, let us number these elements by the
integers from 1 to n; denote by i(k) the element of I to which we have
“assigned the number k. Then (@i, - - -, ai) is a finite sequence, and has

therefore a sum ZL,Q,.(,,). It follows from the general commutativity
~ theorem that the value of this sum does not depend on the manner in
which we have numbered the elements of I; this value is denoted by

i@ 1%

fet I' be a subset of I and assume that a; == 0 for all { e I not belonging
to I'. Then we have X, ,a, = 3, ,4; (i. e., in a sum, we may drop any
number of terms all equal to 0). For, we may assume that we number I in
such a way that the elements of I’ come first; assume that i(1), - - -; i(m)
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are the elements of I’ and i(m + 1), -- ., i(n) the others. Then it is clear
that 2, 0= e, % + (Gmes, + - + ,), and we have only to prove
that a sum of terms all equal to 0 hag the value 0, which is easily done
by induction on the number of terms.

This allows us to extend the notation X,_,a; to certain cases where
the set I may be infinite. In tact, assume that there are only a finite number
of elements i of I for which a; is -= 0 Then I admits at least one finite
subset I’ such that g, is 0 for ail i not in I’; the value of the sum X;g,a;
does not depend on the choice of the set I’ satisfying these conditions.
For, let I'" be another set satisfying the same conditions. Then I'u " is
again a finite set, and we have a;==0 for all { in I’u I" but not in I,
whence 2, ;-a, = X ;2> and we see in the same way that

ziel”ai = EieI’UI”a»:’

which proves our assertion. The common value of the sums X, . ;+q; for all
sets I' satisfying the stated conditions is denoted by X, ,a,.

Assume that we have subsets J; of I, indexed by an index k which runs
over a certain set K, and which satisfy the following conditions: they are
pairwise disjoint, and the union of all of them is the whale of I (this is
called a partition of I). Then, for each k, the sum b, = Zie 7% is defined
(i. e., it has only a finite number of terms = 0); moreover, the sum
2, g zb; is defined, and we have the equality

ztelai = My e by

For, let I’ be the set of indices i € I such that a; 5= 0. Then I’ is finite, and
so, for each k€ K, I'nJ, is finite, which shows that each sum X,q ;4
is defined. Since the sets J; are mutually disjoint, only a finite number of
them can meet the set I’ (this number is at most equal to the number of
‘elements of ['). Now, if J, does not meet I’, we have a;= 0 for all i in J,,
whence b, = 0. This shows that the sum X, b, is defined. For each k,
let J, = J,nI'; then, by definition, b, =X, ,.a;. Let K’ be the set of
indices k for which J} ¢ &}; then we have ,

zee b= zl:sx’bl = Zkex’(zis.l,;ai)'
and we have reduced the proof to establishing the formula

ZiGl’ai = Zkex'(zteuai)

where I’ and K’ are now finite sets. This is easily accomplished by means
of the gencral associativity theorem. ,
Let (a),, and (b)), be families indexed by the same set I and for



8 1. MONOIDS

which 2,0, and Zq,b, are defined. Then g (q + b) is defined,
and we have .

&) stl(“i + b)= Zi;u“{ + Et‘lbi'

For, it is clear that there exists a finite set I'c I such that a; = b =0
for all i not in I', whence

Lo+ b) = 2, er(a; + b)), DI IED Y N Ziaihi = Zigrbs.
Thus, we need only prove (3) in the case where I is finite. Let then
i(1), - -, i(n) be its elements. Let ey =ay =25 (1 <] <« n). Then
3@ + b) = T, (cyq + a). This is equal by the general associativity
theorem to ¢ + - -+ + s, and, by the general commutativity and associo-
tivity theorems, to

(g 4 €+ -+ G + (€ + 6+ - + ) = Diesty + Tygibi

Similar considerations apply to the case of a commutative monoid A
in which the law of composition is multiplicative, and lead to the definition
of the symbol IL,,a, in'the case where there are only a finite number
of indices i e I for which a; = 1. , -

Let A be a commutative additive monoid, n an integer > 0 and a, b
elements of A. Then we have

n(a + b) = na + nb;

this follows immediately from formula (1) above.

Similarly, if A is a commutative multiplicative monoid, then we have
(aby = anb».

If A is any monoid, two elements a and b of A are said to commule with
each other if we have atb = b-a. For instance, the neutral element commutes
with every element of the monoid.

2. Submonoids. Generators

A subset B of a monoid A (in which the law of composition is denoted
by +) is called stable if we have a=b « B whenever a and b are in B.

Exampres: In the additive monoid Z of integers, the set of integers >k
. (where k is any integer) iS stable under addition if k > 0 but not ifk <O
The set 3-- 1, 1{ is stable under multiplication, but not under addition.
In the set of all mappings of the set of real numbers into itself (with the
law of composition o), the set of all mappings of the form z— 2= (n an
integer > 0) is stable, - ‘
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If B is stable, the restriction to B x B of the law of composition = in
A is a law of composition in B, called the induced taw of composition. If
t is associative, then so is its induced law of composition. If r admits aneutral
element ¢ and e« B, then ¢ is a neutral element for the induced law of
composition.

Thus, if we assume that B contains ¢ and is stable, then it constitutes
a monoid when equipped with the induced law of composition. In that
case, B is called a submonoid of A.

If B is a submonoid of A, then it is clear that the composite in 4 of a
finite sequence of elements of B belongs to B and is also the composite
of this sequence in B.

Theorem 4. Let (B),, be a family of submonoids of A, I being any
(non empty) set of indices. Then the intersection B of all B;'s is a submonoid.

Since e e B; for all i, we have ¢ € B, Let a and b be in B; then, for each i,
a and b are in B;, whence atb € By; it follows that atb € B.

Let S be any subset of A. Then S is contained in at least one submonoid

of A, viz. A itséli. By theorem 4, the intersection B of all submonoids of

-A-containing § is a submonoid; B is the smallest submonoid of A contain-
ing S (in the sense that it is contained in any submonoid which contains S).
Ii is called the submonoid generafed by S.

For instance, if S==0, then B is the submonoid { e} consisting of the
neutral element e alone. If Z is the monoid of integers under addition, and
k any integer, the submonoid generated by the set { k f consists of ail ele-
ments nk, where n runs over the integers > 0.

Theorem 6. Let U be any subsef of a monoid A. Then the set C of those
elements of A which commute with every element of U is a submonoid of A.
It is clear that C contains the neutral element. Let g, b be elements of C,
and u any element of U. Then we have
(asd)za == ax(bru) = a=(urb) = (atu):b = (ura)rb = us(asbh),
which shows that a=b commutes with u; C is therefore stable.

Corollary 1. If all elements of a subsel S of A commute with all elements
of U, then all elements of the submonoid A’ gencrated by S commute with
all elements of U.

For, we have S ¢ C (in the notation of theorem 5), whence A’ ¢ C, since A’
is the smallest submonoid containing S.

Corollary 2. If the elemenis of a subsel S of A commute with each other,
then the submonoid A’ generated by S is Abelian.

For, any element of S commutes with any element of A’, by corollary 1
Applying corollary 1 again, with A’ taking the place of U, we see that any
elemenl of A’ commutes with any element of A’.
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3. Homomorphisms

Let A and B be menoids. A mapping f of 4 into B is called a homo-
morphtsm if the following conditions are satisfied:

™ @) finaps the neutral element ¢} of A upon the neutral elemont e, of B;

b) if a, b are any elements of A, we have

f(azb) = f(a}<f(b).
(We use the same notation = for the laws of eomposition in A and in'B;

but the reader should remember that it may happen that the law of com-
position in A is additive and that in B multiplicative.)

ExampLEs: a) Let A be a commutative additive monoid, and let n be
an iateger >> 0; thcn the mapping  — nz is a homomorphism cf A into
itself.

b) Let R be the set of real numbers. Then the mapping x —>¢* i3 a
homomorphism of the additive monoid R into the multiplicative monoid R.

If f is a homomorphism of A into B and g a homomorphism of B into
a third monoid C, then go f is a homomorphism of A into C. The proaf
js obvious.

Let f be 2 homomorphism of A inte B. I (ay, - - -, a,) is a finite sequence
of elements of A, then we have

f(arr .o m,.) = [(al)r ..o rf(a,.). )
This is easily proved by induction on n. In particular, if A and B are both

additive, we have f(na) = nf(a); if they are both multiplicative, we have
f(@®) = (f(a))*; if A is additive and B multiplicative, we have f(na) = ({(@)}*

Theorem 8. Le! f be a homomorphism of A info B. Then the image under
f of a submonoid of A is a submonoid of B. If S is a subset of A, the image of
the submonoid of A generaled by S is the submonoid of B generated by f(S).

If B' is a submonoid of B, then /(B’) (the set of elements z e A such that -
f(x) & B') is a submonoid of A.
The first assertion follows immediately from the deﬂmhom Let B’

be a submonoid of B; since J(e,) = ez € B’, wehavee, [(B }; if a, b are
in /‘ (?’). then f(a) and f(b) are in B’, whence f(ath) = f(a):f(b) & B’ and
ah e } (B'); this proves that f(B’) is a submonoid of A. Let S be a subset

of A and A’ the submonoid generated by S. Then f(A’) is a submonoid
of B and contains /(S). Let B’ be any submonoid of B containing f(S); then

} (8') is 2 submonoid of A and ebviously contains S. Since A’ is the smallest
submonoid of A containing S, we have 4’ c f (B’), which means that



