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Foreword

This book contains a sclection of the papers prescnted at the Second Workshop on
Languages and Compilers for Parallel Computing which took place in Urbana. Illinois
during the first three days of August 1989. This workshop was sponsored by the Center
for Supercomputing Research and Development of the University of Hlinois at Urbana-
Champaign. The First Workshop of this series took place at Cornell University in 1988,
and there are plans to hold a third Workshop in 1990,

The topic of the papers in this book is today of great interest in the research and
industrial communities. A manifestation of this interest was the large number of
participants, representing many different institutions, in the Workshop. This interest,
which only a decade ago was confined to a few research groups. has been spurred by the
widespread proliferation of vector and parallel computers that has taken place during the
last several years. The nced for research in these areas is commonly accepted since.
despite all the progress made, the question of what programming languages should he
used has not been settled. and much remains to be developed in the area of compiler
techniques.

These Proceedings contain several papers discussing languages and language extensions
for parallel computing. including the papers by Baldwin: Catlahan and Smith; Chandra
et al.: Ciancarini; Klappholz et al.; Snyder: and Solworth. There are also a few papers
that describe interactive/graphical environments that extend or complement traditional
programming languages (Bailey and Cuny: Browne). In the area of compilers and
restructurers. the papers contained in this book cover several topics. including:
fundamental parallelization techniques and parallelization systems (Bancrjee; Cytron ot
al.: Li and Yew: Polychronopouios et al.). techniques for fine-grain purallefism (Aiken
and Nicolau; Ebcioglu and Nakatani; Uht), for shared-memory parallel processors
(Rochat), for distributed memory parallel processors (Wolfe), and for dataflow computers
{Gao and Paraskevas). There are also two papers on tools for parallel programming. one for
debugging (Choi and Miller). and the other for performance enhancement (Kwan et al.).

Most of the existing parallelizing compilers are aimed at Fortran, but parallelization
techniques are being rapidly developed for other languages. In this book. work is reported
on the parallelization of C (Gannon et al.) and Lisp (Harrison and Ammargucllat).
Finally. in the area of compilation and restructuring of parallel programs there are papers
on the translation of C-Linda (Carriero and Gelernter), machine code optimization for
the Cray computer (Eisenbeis et al.). and techniques for the further parallelization of
parallel programs (Midkiff et al.). ‘

We believe this book presents a good panoramic view of the state of the rescarch in
Languages and Compilers for Paraliel C omputing in 1989. We hope that this book will
be as exciting for you to read as it was for us to compile.

David Padua
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1  Fine-grain Parallelization and the
Wavefront Method

Alexander Aiken and Alexandru Nicolau

Abstract

We develop a technique for extracting parallelism from ordinary (se-
quential) programs. The technique combines two fine-grain, instruc-
tion level code transformations to achieve effects similar to the wavefront
method. Such effects were previously available only as transformations at
coarser levels of granularity. By integrating the strengths of the wavefront
method with the ability to extract fine-grain, irregular parallelism at the
instruction level, our technique exploits previously untapped parallelism.

1 Introduction

Progress in parallelizing compiler technology is perhaps the most important factor in
translating the promise of parallel computing—dramatically faster computation—into
reality for most users. Much progress has been made, and many techniques developed
for extracting parallelism from ordinary programs [5,7,10,11,18] have been integrated
into production tools.

Compile-time parallelization techniques fall roughly into two, largely disjoint classes.
The first class, fine-grain, low-level parallelization, extracts irregular parallelism at the
instruction level, but cannot deal well with parallelism at the level of loops!. The
second class sacrifices irregular parallelism in favor of high-level, regular parallelism

) While simple loop-unwinding may alleviate this problem{ it doeg not ‘iminate it.



achieved by overlapping (partially or completely) loop iterations or full loops. Per-
colation Scheduling [17] is an example of the first class of techniques; doacross [8] is
an example of the second class. The strengths of these two approaches are compli-
mentary; with the emergence of machines that can exploit both instruction-level and
coarser forms of parallelism—such as Multifiow’s Trace, Cydrome’s Cydra; Chopp, Al-
liant, Burton Smith’s Horizon, and machines based on Intel’s i860 chip—the integration
of these levels of parallelism becomes importani.

We show how to uniformly integrate fine-grain and coarse-grain parallelization of
nested loops. We make use of two techniques: perfect pipelining {1,4], a transformation
that bridges the gap between instruction level and iteration level parallelization for in-
nermost loops, and loop quantization [3,16), a transformation that exposes instruction-
level parallelism across nested loops. The algorithm shares many of the properties
of the wavefront method [19], one of the most powerful high-level (nested-loop) par-
allelizing transformations, while also exploiting any irregular parallelism available at
the fine-grain (instruction) level. The development illustrates the surprising expressive
power of the fine-grain transformations and their relation to the wavefront method.

2 Basic Definitions

A set of nested loops L consists of loops labeled L, (outermost) to L. (innermost).
Each loop L; has an associated index variable I;. The iteration space of L consists of
iteration vectors (iy, ...,in) where each i; is an assignment to I; [13]. Iteration vectors
are ordered lexicographically; this corresponds to the normal sequential execution order
of iterations. We assume that (0,...,0) is the first iteration of any loop.

Programs are represented as program-graphs (also called control-flow graphs) where
nodes contain zero or more statements. A statement is either an assignment or a lest
(an If-statement). Execution of a program begins at a distinguished start node and
proceeds sequentially from node to node. A node is executed by evaluating the node’s
statements in parallel; the assignments update the store and the tests return the next
node to be executed. The precise definition of the concurrent execution of tests is
beyond the scope of this paper; details may be found in (1,17].

Program pafalleli:atfon requires dependency analysis. Two program statements are
dependent if one accesses a storage location that the other writes. Dependent state-
ments may not be executed in parallel. Dependency information is usually represented



by a dependency graph, where an edge between two statements represents a potential
dependency [12]. We say that two iterations of a loop are dependent if any pair of
statements from the two iterations is dependent.

Several of the examples include a picture of the iteration space and the dependencies
between iterations. The iteration space is depicted in the first quadrant of the plane;
points in the plane are iterations. The horizontal axis represents the inner loop, the
vertical axis represents the outer loop. An arrow is drawn between two iterations if they
are dependent; thus, an arrow simply means that the normal order of execution between
the iterations must be enforced. For simplicity, we use only one type of dependency. In
the literature, dependencies are usually classified as belonging to one of several types
[12], but this is unnecessary for the presentation of our technique.

Our algorithm uses three low-level transformations of a program-graph: unroll,
move, and delete. Unroll adds (unrolls) one copy of the original loop body at the end of
the current loop body. We distinguish between the original and current loops because
we alternately unroll and perform code motions. The move transformation moves a
statement z from a node i to a predecessor of i if dependencies are not violated. The
delete transformation deletes an empty node (a node with no statements) from the
program-graph. A program is parallelized by application of these transformations,
packing multiple statements into nodes for parallel execution. These transformations
are based on the primitives of percolation scheduling. Complete descriptions of the
transformations and the model of computation are in [2].

For simplicity, we restrict the development to two nested loops with a single as-
signment in the loop body. The results apply directly to loops with any number of
statements and arbitrary flow-of-control. Because of the simple flow-of-control in the
example loops, we can adopt a representation more readable than program .graphs.
Statements are written in a standard high-level syntax. All statements on each line of
a program are executed in parallel; successive lines are executed sequentially.

3 The Wavefront Method'

The wavefront method {13,14,15,19,20] extracts parallelism from multiple nested loops
in many cases where parallelism cannot be found in any single loop. The traditional
derivation of the wavefront method involves finding a legal wavefront (i.e., a line in two
dimensions, a plane or hyperplane in higher dimensions) through the iteration space.



fori«-Otondok
for j — 0 to N; do

Afi,j) — Ali - 1,j+1] + Afi - 1,5 + Ali,j + 1);
(a) A sample loop.
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(b) The iteration space and optimal wavefront.

. Figure 1: An example of the wavefront method.

All iterations on the same wavefront may be executed in parallel. A legal wavefront
preserves dependencies—two dependent iterations are executed in the same order as in
the original loop. When a loop is executed in the wavefront ordering, iteration (i, j) is
executed at wavefront (time) step i » b + j, where the wavefront angle is arctan(—-1/b).

The goal of the wavefront method is to find a wavefront that maximises parallelism;
that is, the goal is to find a wavefront that maximises the number of iterations exe-
cuted in parallel at each step. Consider the loop in Figure la. Figure 1b shows the
iteration space and dependencies; the optimal wavefront angle is 30°. We use a slightly
different formulation of the wavefront to make comparison with our technique direct.
The wavefront is expressed as a line with slope —1/b for some positive integer b. (As
in [19], we do not consider the cases where the wavefront angle is 0° or 90°. In these
cases, the wavefront method does not apply.) There are many potential wavefronts .
that cannot be expressed by these ratios; however, the optimal wavefront is always of
this form. In Figure 1b, the optimal wavefront slope is —1 /2.

The wavefront must preserve dependencies; a wavefront that is t0o steep may reverse
the order of dependent iterations. The following definition describes all legal wavefronts.

Definition 8.1 (Legal Wavefronts) Let L be two nested loops, let -1 /b be a wave-
front slope, and let (i, ) and (i', j') be the iteration vectors of any dependent iterations.



Then the wavefront is legal if and only if:

(,5) <@, i) = isb+j<i'*xb+j

4 Loop Quantization

Loop Quantization [16] is a technique for unrolling multiple nested loops. Loop un-
rolling provides a large number of instructions—the unrolled loop body—for scheduling
by instruction-level transformations (such as trace scheduling [9] or percolation schedul-
ing [2,17)). Unrolling nested loops is important because parallelism may be present in
outer loops and not in the inner loop, or even across several of the nested loops.

In general, loop quantigation computes integers ki, ..., kn, where n is the number
of nested loops. The original loop is unrolled &, times on the innermost loop, then
this new loop body is unrolled k; times on the next innermost loop, and so on. The
resulting loop I has an n-dimensional “box” of iterations of L as its loop body. All
iterations in the box are executed before the box is shifted (by a “quantum” jump)
along any of the dimensions. An example of a two by two quantization of the loop in
Figure 1 is given in Figures 2a and 2b.?

Quantigation alters the execution order of iterations of L and may therefore violate
data dependencies. Conditions under which a quantisation is legal are given in [1,3].
The two by two quantization given in Figure 2b is illegal. As shown in Figure 3, the
quantization box “cuts” a dependency illegally—iteration (i,j) must execute before
iteration (i + 1,5 — 1). '

Under certain conditions a mitred guantization can permit quantization where a
normal quantization is illegal [1,3]. Mitred quantisation permits rhomboid quantization
boxes instead of simple rectangular quantization boxes. For example, in Figure 4, the
two by two mitred quantization is legal, because all dependent iterations are either
included inside a quantized iteration or are satisfied by normal loop order execution in
the quantized iteration space. Figure 2c shows the example loop after a two by two
mitred quantization.

Mitred quantization computes the slant of the quantization box from the depen-
dencies of the loops. For instance, in Figure 1, iteration (i, ) is dependent on iteration
{i+ 1,5 — 1). The slope of this dependency is —1/1. Mitred quantization selects as the

3Quantised loops require a small amount of extra code to handle boundary conditions; for details see
[1,8].




fori— 0to N; do
for j— 0to N; by 2 do
begin ‘
Afi,jl — Al - 1,j+1]+ Al - 1,3 + Afi,j + 1]
Ali,j+1) —Ali-1,j+ 2]+ Ali-1,j+ 1]+ Afi,j + 2];
end ' .
(a) Loops after inner loop is unrolled.

fori— 0toN; by 2do
for j— 0to N; by 2do
begin
Afi,j) — Afi-1,j + 1]+ Afi - 1,j) + Ali,j + 1);
Afi,j+1] — Ali—1,j+2]+Afi—-Lj+ 1]+ Afi,j+2);
Ali+1,jl — Ali,j+ 1]+ Afi,j] + Ali + 1,j+ 1];
Ali+1,j+1} — Ali,j+2)+Ali,j+ 1]+ Ali+1,j+2};
end
(b) Loops after 2 x 2 quantization.
fori—0to N; by 2do
for j— 0to N; by 2 do
begin
A j+ 1)~ Ali-1L,j+2]+Ai-1,j+ 1]+ Ali,j+2);
Ali,j+2) « Ali — 1,j+3) + Ali - 1,j+ 2] + Ali,j + 3J;
Ali+1,j) — Afi,j + 1) + Ali,j] + Ali+ L,j+1];
Ali+1,j+1) — Ali,j+2)+Af,i+ 1)+ Ali +1,j+2);
end
(¢c) Loops after 2 x 2 mitred quantization.

Figure 2: How quantization works.



outer loop 4

NN

inner loop

Figure 3: The two by two quantization is illegal.

outer loop 3

inner loop

Figure 4: A legal mitred quantization of the loop in Figure 1.

slope of the sides of the quantization box the smallest negative slope of all dependen-
cies. This produces a non-trivial, legal quantization for loops encountered in practice.
As the following Lemma shows, there is a strong relationship between mitred quanti-
zation and the wavefront method. Indeed, similar effects to mitred quantizations can

be achieved by combining the unroll-and-jam of [6] with the skewing produced by [19].

Lemma 4.1 Let L be two nested loops. Then the following statements about L are
equivalent:

1. The optimal wavefront slope is -1/4.

2. The smallest negative slope of any dependency is —1/(b — 1).

3. A mitred quantization box has slope ~1/(b —1).
Proof: Let -1/(b- 1) be the slope of the mitred quantization. By definition, this
is also the smallest negative slope of any dependency. It is easy to show that the wave-
front slope 1/b is legal by Constraint 3.1, because it preserves the dependency with the

smallest negative slope. Furthermore, this is the optimal wavefront slope-—a slope of
1/(b-- 1) would put two dependent iterations on the same wavefront. Finally, if 1/bis



fori.—0to N;
. for j— 0 to N;
Ali,j] — (Al +1,3) + Al § + 1) + Al - 1,3} + Afi, j - 1])/45

(a) Gauss-Seidel iteration.

outer loop

inner looﬁ
(b) The iteration space.

Figure 5: Another loop.

the optimal wavefront slope, then there must be a dependency of slope ~1/(b - 1) and
no dependency of smaller negative slope. If the optimal wavefront slope is —1/1, then
normal (rectangular) quantisation applies. O

5 Perfect Pipelining

" Quantisation alone is insufficient to express the wavefront method using fine-grain
parallelisation. In principle, there is a fundamental difference. The wavefront method
expresses unbounded parallelism—the number of iterations executable in parallel in the
wavefront method is unrestricted, and parallelism grows with the size of the iteration
space. In our code compaction model, each node in the program graph can contain only
a finite number of statements. However, this is not a meaningful difference; programs
must be executed on a machine with fixed resources—e.g., processors. We make the
assumption that there is a k such that no more than k iterations can be executed
in parallel. We derive an algorithm that exposes at least as much paralielism as the
wavefront method for any machine sise &.

. There is a more serious barrier to achieving the effect of the wavefront method
using fine-grain parallelisation. Consider the standard Gauss-Seidel iteration loop in
Figure 5; the iteration space with dependencies is shown in Figure 6. Assume that



fori — 0 to N; by 3 do
for j — 0 to N; by 4 do
begin
Ali,j] —~ (Al +1,j] + Afi,j + 1]+
A[i - ltjl + A[ivj - 1])/4;
Afi,j+1] — (Al +1,j+ 1]+ Afi,j + 2]+
Ali-1,j+ 1]+ AL/

Afi,j+3) — (Ali +1,j+3] + Ali,j + 4]+
Ali —1,j+3] + Ali,j +2])/4

Ai+2,j+2 — (Ai+3,j+2]+Ali+2,j+ 3+
Ali+1,j+ 2] +Ali+2,j+1]))/4
Ali+2,j+3) — (Ali+3,i+3]+Ali+2,j+4]+
Ali+1,j+3] +Ai+2,j+2])/4
end;

Figure 6: Loop with three by four quantization.

fori— 0to N; by 3do
for j — 0 to N; by 4 do

begin
fi, )
[iaj+1] [‘ ’*'laj]
fi,j+2l i+1,j+1] fi+2i
li,j+3] i+1,j+2 [+2i+1)
i+1,j+3] [i+2j+2
i+2,j+3]

end;

Figure 7: Loop after quantization and compaction.




fori — 0 to N; by 3 do-
for j — 0 to N; by 6 do

begin
fi,il
i,j+1] fi+1,j
[i’j+2] [l+1t1+1] [‘+2$J]
i, +3) i+1,j+2 [i+2,j+1]
[i,j+4 [i+1,j+3] [i+2j+2]
[i,j + 8] i+1,j+4] [i+2j+3
[i+1,j+5 [i+2,j+4]
i+2j+85)

end;

Figure 8: Loop after further unrolling and compaction.

the target machine has sufficient resources to execute three iterations of this loop in
parallel. ‘ The loop unrolled with a three by four quantization is given in Figure 7.3
(We show below how to determine the amount of such unrollings.) The loop after
compaction—every statement moved as far “up” as possible using move and delete—is
given in Figure 8. For brevity, only the values of the index variables are given for
each statement. Although full resource utilization is achieved in the middle of the loop
body, utilization at the beginning and the end of the loop body is lower. Furthermore,
regardless of the unrolling on either loop, after compaction there is always some start-up
and wind-down code in the loop body.

The wavefront method also has start-up and wind-down periods where resources are
less than fully utilized. However, for the wavefront method this occurs only once at the
beginning and once at the end of the execution of the nested loops. Simply quantizing
and compacting produces code that under-utilizes resources at the beginning and end
of every quantized iteration.

If a loop could be fully unrolled and compacted (making the quantization box the
entire iteration space of that loop) then the start-up and wind-down costs would be in-
curred only at the beginning and end of the loop’s execution. Full unrolling is generally
undesirable or impossible; however, there is a transformation, perfect pipelining, which
achieves the effect of full unrolling and compaction of a loop[1,4]. Perfect Pipelining
combines very fine-grain parallelism with the pipelining of loop iterations. The idea
behind perfect pipelining is that a loop’s dependencies encode some repeating behav-

3Normal quantisation is adequate for this example.
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