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Preface

This book is mainly designed for the graduate students who are in-
terested in the theory of BCK and BClI-algebras.

BCl-algebras are a wider class than BCK-algebras, introduced by
Kiyoshi Iséki in 1966. BCl-algebras as a class of logical algebras are
the algebraic formulations of the set difference together with its pro-
perties in set theory and the implicational functor in logical systems.
They are closely related to partially ordered commutative monoids
as well as various logical algebras. Their names are originated from
the combinators B, C, K and I in combinatory logic. The early re-
search work was mainly carried out among the Japanese mathemati-
cians Kiyoshi Iséki and Shotaro Tanaka, etc. who did a great deal of
foundation work. Since late 1970s, their work has been paid much
attention. In particular, the participation in the research of Polish
mathematicians Tadeusz Traczyk and Andrzej Wroniski as well as
Australian mathematician William H. Cornish, etc. is making this
branch of algebra develop rapidly. Many interesting and important
results are discovered continuously. Now, the theory of BCI-algebras
has been widely spread.

The structure of this book is similar to that of Two B-Algebras,
the teaching materials by Zhaomu Chen. Some of the contents are
drawn from the following two books: BCK-Algebras by Jie Meng and
Young Bae Jun, and An Introduction to BCI-Algebras by Jie Meng
and Yonglin Liu. Most contents come from firsthand information.
Because Professor Huishi Li’s axiom system is adopted and also be-
cause this book’s system is required, many proofs are properly modi-
fied. This book is only an analysis on the general theoretical basis of
BCl-algebras. Therefore the materials are somewhat limited. For ex-
ample, p-semisimple algebras only take a little space, contents on the
topology and category theories and fuzzy BCl-algebras are omitted.
I think, it may be more proper to do so for an elementary book. We
try what we can to use all kinds of notations and terminologies used
by most papers’ authors. More examples are given and the materials
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are handled more systematically and various arguments are written
in more details so as to be read easily. Quite a lot of exercises are
arranged at the end of every section. They are also the component
part of our theory. The exercises with the sign * are more difficult
for the beginners who can leave them away. The two appendices at
the back of the text will be of great value to those who are interested
in further research of BCl-algebras.

For many times the late Professor Zhaomu Chen, my former teacher,
encouraged me to compile this book. Professors Jie Meng, Hao
Jiang, Young Bae Jun, Yonglin Liu and Doctor Eun Hwan Roh pro-
vided much valuable information. Professor Hao Jiang went over the
manuscript and pointed out some mistakes. Miss Liying Chen in
Longyan Teachers’ College provided me much help in English expres-
sion. Mr Shenrong Lu in Longyan Teachers’ College gave me much
guidance in using computer. Mr Wenqing Zhang in Sé,nming College
read through all pages and corrected some spelling and grammatical
mistakes. Sanming College that I am working in now offers financial
aid for publication of the book. Here, I extend my heartfelt thanks

to all those who have supported, helped and encouraged me to write
this book.

Huang Yisheng
Sanming, Fujian
December, 2003
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Chapter 0
Introduction

BCK-algebras and BCl-algebras are abbreviated to two B-algebras. The
former was raised in 1966 by Y. Imai and K. Iséki, Japanese mathematicians,
and the latter was put forward in the same year due to K. Iséki.

Two B-algebras are originated from two different sources. One of the
motivations is based on set theory. In set theory, there are three most
elementary and fundamental operations. They are the union, intersection
and set difference. If we consider those three operations and their properties,
then as a generalization of them, we have the notion of Boolean algebras.
If we take both of the union and intersection, then as a general algebra,
the notion of distributive lattices is obtained. Moreover, if we consider the
union or the intersection alone, we have the notion of upper semilattices or
lower semilattices. However, the set difference together with its properties
had not been considered systematically before K. Iséki.

Another motivation is from propositional calculi. There are some systems
which contain the only implicational functor among logical functors, such
as the system of positive implicational calculus, the system of weak positive
implicational calculus, BCK-system and BCl-system. Undoubtedly there
are common properties among those systems.

We know very well that there are close relationships between the notions
of the set difference in set theory and the implication functor in logical
systems. For example, we have the following simple inclusion relations in
set theory:

(4~B)-(A-C)SC-B,
A-(A-B)CB.
These are similar to the propositional formulas in propositional calculi:
- (g—r)—>@—r)
p—(p—q) —9q).
It raises the following questions. What are the most essential and fun-
damental properties of these relationships? Can we formulate a general
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algebra from the above consideration? How will we find an axiom system
to establish a good theory of general algebras? Answering these questions,
K. Iséki formulated the notions of two B-algebras in which BCI-algebras are
a wider class than BCK-algebras. Their names are taken from BCK and
BCl-systems in combinatory logic.

§0.1 Mappings Abelian Groups Binary Relations

We begin our discussion with a brief survey of somhe fundamental notions
which will be frequently mentioned.

A mapping f : A — B is a rule of correspondences from a nonempty
set A to another set B, satisfying the condition that for any a € A there
exists a unique element b € B such that a correspouds with b (symbolically,
f(a) =bor f : a— b), where A is called the domain of f, B the codomain
of f, and the set, Im(f) = {f(a) | a € A}, the image of f. Also, we call b
the image of a under f, and a an inverse image of b under f.

In general, an element b in B may have many inverse images, or may not
have any one. If for all b € B there is at least an inverse image of b, i.e.,
Im(f) = B, we call f a surjection. If for any b € Im(f) there is one and
only one inverse image of b, f is called an injection. Of course, a bijection
f : A — B is a mapping which is both surjective and injective.

Denoting a* for the image of a under a mapping f : A — B, we can regard
* as an operation from A to B. From the above statements of mappings, an
operation * from A to B has to satisfy: () uniqueness: the result a* after a
through the operation * is unique; (@ closeness: a* must belong to B. For
example, the power a*! = a? (a € Z) can be regarded as an operation *;
from the set Z of all integers to itself, and (a, b)*> = |ab| (a, b € Z) as an
operation * from the Cartesian product set Z x Z to Z, where | o | is the
absolute value of e.

Let A be a nonempty set. An operation * from the Cartesian product set
A™ to A is called an n-ary operation on A. Especially, a 2-ary operation
is just a binary operation, and a 1-ary operation is a unary operation.
Then the above operation *; is a unary operation on Z, and 2 is a binary
operation on Z.

There are some elements in a set, which play special roles. For example, 0
and 1 in Z have respectively the familiar properties: x4+ 0=z and z-1 =z
for all z € Z. Such an element is actually a special mapping, and so in our
point of view, it can be regarded as a so-called nullary operation (usually,
it is called a constant).
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A system consisting of a nonempty set A together with some operations
on A and their laws is called an algebra. Those operations on A are usually
described by the type of this algebra. For example, a group (G} -, €) is an
algebra of type (2, 0). That is to say, this system consists of a nonempty
set G and a binary operation - on G as well as a constant e (i.e., a nullary
operation). Similarly, a ring R is an algebra of type (2, 2, 0), and a field F
is of type (2, 2, 0, 0).

A nonempty subset B of an algebra A, which contains all constants of A
if they exist, is called a subalgebra of A if B is closed under all operations
on A and if all laws in A are still valid in B.

Abelian groups will play a basic role in BCI-algebras. We recall that an
algebra (G} -, €) of type (2, 0) is said an Abelian group (or a commuta-
tive group) if the following hold:

(1) associative law: (ab)c = a(bc) for any a, b, c € G;

(2) commutative law: ab = ba for any a, b € G;

(3) the unit element of G exists: there is an element e € G such that
ea = a for any a € G;

(4) every element in G is invertible: for any a € G, there exists b € G
such that ab =e.

Several simple examples of Abelian groups are as follows: the additive group
of integers, the additive group of residue classes modulo n, the group of roots
of unity.

We also recall that an algebra (M; -, e) of type (2, 0) is called a monoid
if the operation - on M satisfies the associative law and the constant e is a
unit element of M. Any group is obviously a monoid. A sub-semigroup
S of a monoid M means that S is a nonempty subset of M and S is closed
under the operation - on M. A submonoid of M is just a subalgebra of the
monoid M as an algebra. A sub-semigroup is generally not a submonoid,
for example, the set {1, 2, 3, - -} of natural numbers is a sub-semigroup of
the additive group (Z; +, 0) of integers, but not a submonoid of it.

Because every element a in a group G has its inverse element a~!, we can
induce a binary operation *x on G by putting axb=a - b‘ll. It is interesting
that if a non-vacuous subset H of G is closed under *, it must be a subgroup
of G. However, if H is closed under -, it may not be a subgroup of G. From
this, we see that the operation * on G is sometimes more effective and useful
than the operation - on G, although * does not satisfy the associative and
commutative laws.
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Binary relations are a generalization of the notion of mappings. Roughly
speaking, a binary relation is an assertion determining the correctness be-
tween two objects. We now describe this notion. Let A, B be two non-
vacuous sets and let @ be an assertion between A and B. If each ordered
pair (a, b) of elements a € A and b € B either fits or unfits the assertion
0, we call 0 a binary relation between A and B. Especially, if A = B,
we say the relation 6 is on A. We denote a ~ b(0) for a and b fitting the
relation 6. In the viewpoint of abstract, a binary relation @ between A and
B can be simply regarded as a subset of A x B. In fact, we first note that
{(a,b) € Ax B|a~ b(0)} is evidently a subset of A x B. Next, given a
subset C of A x B, we can provide a binary relation # between A and B as
follows: a ~ b (6) if and only if (a, b) € C.

Equivalence relations are an important class of binary relations. If a
binary relation § on A satisfies the following: for any a, b, c € A,

(1) reflexivity: a ~ a (6);
(2) symmetry: a ~ b(6) implies b ~ a (9);
(3) transitivity: a ~ b () and b ~ ¢(6) imply a ~ c(9),

then we call it an equivalence relation on A. An interesting example of
such relations is the congruence modulo n in number theory. In this case,
we are used to denote @ ~ b(0) by a = b(mod n) in the sense that a — b is
a multiple of n.

A partition 7 of a set A means that 7 is a collection of non-vacuous
subsets of A such that the union of all members in =« is the whole of A
and distinct members in 7w are disjoint. An equivalence relation can be
characterized by a partition. In fact, if 0 is an equivalence relation on A,
then the quotient set 7 = {@ | a € A} determines a partition of A, where @
is the set {z € A |z ~ a(0)}, called the equivalence class containing the
element a. Conversely, if = is a partition of A, then the following relation
8 on A is an equivalence relation: a ~ b () if and only if a, b € C for some
Cem '

Another important class of binary relations is partial orderings. For such
a relation 6, the symbol a ~ b(#) is usually written as a < b. A binary
relation < on a set A is called a partial ordering if the following hold: for
any a, b, c € A,

(1) reflexivity: a < a;
(2) anti-symmetry: a < b and b < a imply a = b;
(8) transitivity: a < band b < cimply a < c.
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A typical example of partial orderings is the inclusion relation C of sets. If
« is a partial ordering on A, the system (A; <) is said a partially ordered
set. If we do have either a < b or b < a for any a, b € A, we call such a
partially ordered set (A; <) a totally ordered set. Sometimes, we denote
a<banda#bbya<b And we write a > b as an alternative for b < a
and ¢ > b for b < a.

§0.2 Lattices Boolean Algebras

Given two elements a and b in a partially ordered set (L; <), an element u
in L is said a lower bound of a and b if u < a and u < b. The element u is
said a greatest lower bound of a and b if @D u is a lower bound of a and
b; @ v < u for every lower bound v of a and b. The greatest lower bound
is clearly unique if it exists. In a similar fashion we can define an upper
bound and the least upper bound of a and b. The greatest lower bound
is often abbreviated to g.l.b., and the least upper bound to Lu.b. There
are some partially ordered sets, each of which has the greatest element or
the least element. Sometimes, we denote them by 1 and 0, called the unit
element and the zero element respectively.

A partially ordered set (L; <) is called a lower semilattice if any two
elements in L have the greatest lower bound of them. It is called an upper
semilattice if each pair of elements in L has its least upper bound. If
(L; <) is both a lower semilattice and an upper semilattice, we call it a
lattice.

Let’s list several examples of lattices as preliminaries. It has been known
that the partial ordering of a partially ordered set of finite order can be
described by a diagram, called a Hasse diagram.

Example 0.2.1. Let L be the set {z, y, 2, 0, 1}. Define two partial order-
ings on L by the following Hasse diagrams respectively:

1 1
Yy
x z x
z
0 0

Then L with respect to each of these orderings forms a lattice. We call the
former the rhombus lattice, and the latter the pentagon lattice.

We always denote C for the inclusion relation of sets in this book. If A
is properly contained in B, we will write it by A C B.
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Example 0.2.2. (1) (25; C) is a lattice, called the power set lattice of
S, where 25 is the power set of a set S (i.e., the collection of all subsets of
S), and g1b.{A,B} = ANB, Lub.{A, B} = AUB for any A, B € 25.

(2) (L(V); ©) is a lattice, called the subspace lattice of V, where L(V)
is the collection of the whole subspaces of a vector space V over a field, and

glb.{A, B} = ANB, l.ub.{4, B} is the subspace A+ B spanned by A and
B.

We are used to denote a A b for g.l.b.{a,b} and a V b for Lu.b.{a,b}. If
(L; <) is a lower semilattice, then A is a binary operation on L and we can
induce an algebra (L; A) of type 2, satisfying the following conditions:

(1) idempotent law: a A a = a;
(2) commutative law: a Ab=bAaq;
(3) associative law: (aAb)Ac=aA (bAc).

The converse is still true. That is because we can induce the following
partial ordering < on L such that (L; <) is a lower semilattice:

a<bifandonlyifanb=aqaforalla,be L.

For the case that (L; <) is an upper semilattice, there is also a similar
situation. Then, as we have known, we have an alternative definition of
lattices as follows. An algebra (L; A, V) of type (2, 2) is called a lattice if
the following laws hold:

(L1) idempotent law: aAa=a and aVa =aq;

(L2) commutative law: aAb=bAa and avVb=bVa;

(L3) associative law: (aAb)Ac=aA(bAc)and (aVb)Vc=aV (bVe);

(L) absorptive law: aA(aVb)=a and aV (a Ab) = a.

From our definition of subalgebras, a sublattice M of a lattice (L; A, V)
means that M # & and M is closed under A and V (here, the laws L; to
L4 are naturally valid in M). Then M with respect to the induced partial
ordering < forms a lattice (M; <), where a < b if and only if a Ab =a (or
equivalently, a Vb = b). It is worth attending that given a nonempty subset
of a lattice (L; <), it with respect to < may form a lattice where < is the
partial ordering defined on L, but such a lattice may not be a sublattice of
(L; <). For instance, the subspace lattice (L(V); C) of a vector space V is
generally not a sublattice of the power set lattice (2V; C) of V because the
union A U B of two subspaces A and B need not be a subspace of V. The
occurrence of this phenomenon results from which the partial ordering < is
not a binary operation on L.
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A lattice L is called modular if it satisfies the modular law:
azbimpliesaA(bVe)=bV{aAc),
or equivalently
a<bimpliesaV(bAc)=bA(aVc).

All of the lattices in Examples 0.2.1 and 0.2.2 are modular except the
pentagon lattice. From lattice theory, a lattice L is modular if and only if
it does not contain any pentagon sublattices of L.

A totally ordered subset of a partially ordered set L is called a chain.
An element a in L is said a cover of another element b in L if a > b and

there does not exist any element z in L such that ¢ > ¢ > b. A connected
chain from a to b is a chain

a=aqy>a>a3>->a0,=b
such that a;_; covers a;, ¢ = 1,2, ---, n. In this case the number n is
called the length of this chain. The greatest number in the lengths of all
connected chains from a to b is said the length from a to b. If there is
not such a greatest number, we say the length from a to b is infinite. If
L contains the zero element 0, the length from a to 0 is often called the
length of a. A partially ordered set is said to be of finite length if the

lengths of all connected chains are bounded. The following is an interesting
result in lattice theory.

Theorem 0.2.1. Let a, b be elements in a modular lattice L such that

a > b. If L is of finite length, then all connected chains from a to b have
the same length.

A lattice L is called distributive if it satisfies the distributive law:
an(bVvec)=(aAb)V(aAc),
or equivalently
aV{bAae)=(aVb)A(aVec).

Every totally ordered set is obviously a distributive lattice. In Examples
0.2.1 and 0.2.2, the power set lattice is the only distributive lattice. As
is well known, a distributive lattice must be modular, but the inverse is
false. It is worth pointing out that from lattice theory, a distributive lattice
is in essence a set algebra because it is isomorphic to a sublattice of the

power set lattice 25 of some set S. The following is a useful criterion for
the distributivity of a lattice.

Theorem 0.2.2. A lattice L is distributive if and only if it contains neither
a pentagon sublattice nor a rhombus sublattice.
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Let L be a lattice with the zero element 0 and the unit element 1. Given
a pair of elements a,b in L, if aAb = 0 and a Vb = 1, then one of
a and b is called a complement of the other. If every a € L has its
complements, we say L is a complemented lattice. The rhombus and
pentagon lattices are complemented, but not distributive. A totally ordered
set is a distributive lattice, but not complemented if the order of it is greater
than 2. Generally speaking, the complements of an element are not unique
if they exist. For instance, for the rhombus lattice in Example 0.2.1, y and
z are the complements of x. However, as we have known, for a distributive
lattice L with 0 and 1, the complement of an element a in L must be unique
if it exists. We denote a’ for the only complement of a.

If a lattice is both complemented and distributive, we call it a Boolean
algebra, or a Boolean lattice. The symbol B is used to denote such a
lattice. As any element a in B has one and only one complement a’, there is
a unary operation ’ on B. Consequently, a Boolean algebra B is actually an
algebra (B; A, V, ’, 0, 1) of type (2, 2, 1, 0, 0). Every power set lattice 25
is of course Boolean. Note that a distributive lattice is a set algebra in the
sense of isomorphisms. A Boolean algebra is in reality a subalgebra of the
algebra (25; N, U, !, @, S) for some set S, where A’ is the complementary
set of A, i.e., A’ =S — A for any A € 25. From this, the following laws are
always true in a Boolean algebra:

(1) involution law: a” = a where a” = (a’)’;

(2) de Morgan’s law: (aAb) =a’ VYV and (aVd) =a' AY.

It has been known that a ring (R; +, -, 0) means that (R; +, 0) is an
Abelian group and (R; ) is a semigroup (i.e., R is closed under the multi-
plication and the associative law of multiplication holds) such that the left
and right distributive laws of the multiplication to the addition are valid.

A Boolean ring (B; +, -, 0, 1) is a ring with 1 as the unit element such
that each element a € B is idempotent (i.e., a? = a). For a Boolean ring B
we have the following facts: '

(1) B is of characteristic 2: a+a =0 for all a € B;

(2) the multiplication satisfies the commutative law: ab = ba;

(3) every element in B — {0, 1} is a zero divisor: for any a € B — {0,1},
there is a nonzero element b € B (e.g., b =1+ a) such that ab = 0.

Let (B; A, V, ', 0, 1) be a Boolean algebra. Define two binary operations
+ and - on B by

a+b=(aAb)V(a’Ab) and a-b=aAb.
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Then (B; +, -, 0, 1) is a Boolean ring (here, the verification is routine and
omitted, the same below). For this ring, letting

alNb=ab, alb=a+b+ab and a* =1+a,
we also have a Boolean algebra (B; N, U, *, 0, 1). It is interesting that we
have the following facts:

alNb=aAb, altb=aVb and a* =a’,

in other words, (B; M, U, *, 0, 1) is just the original algebra. Next, if we
begin with a Boolean ring (B; +, -, 0, 1), we can induce a Boolean algebra
(B; A, V, 7, 0, 1) where

aAb=ab, aVb=a+b+aband ¢’ =1+a.
And then we can also induce a Boolean ring (B; &, ©, 0, 1) where

a®b=(aAV)V(a'Ab) and a®b=aAb.

It is also interesting that (B; &, ®, 0, 1) is just the original ring. These ana-
lyses show that the process of passing from a Boolean algebra to a Boolean

ring and the process of passing from a Boolean ring to a Boolean algebra
are inverses. We state these phenomena as the following theorem.

Theorem 0.2.3. Boolean algebra and Boolean ring are two types of equiv-
alent abstract systems.

Finally, we state several terminologies as follows. Let L be a lattice. An
ideal I of L means that I is a nonempty subset of L, satisfying the following
conditions: for any a, b, c € L,

(1) aelandbelimplyavbel;
(2) aeIandc< aimply ce .
Dually, a filter or a dual ideal F of L is a nonempty subset of L, satisfying
(1) a€e Fandbe F imply anb € F;
(2) ae Fandc>2aimplyc€ F.
Given an element u € L, the set (u] = {a € L | a < u} is an ideal of L.

Dually, the set [u) = {a € L | a > u} is a filter of L. It is easy to see that
an ideal I of L is a sublattice of L, so is a filter F of L.

A mapping f from a lattice (L; A, V) to another lattice (L'; A, V') is
called a homomorphism if for all a, b€ L,
(1) flanb) = f(a) N f(b);
@) flavd)=f(a) V' f(b).
Every lattice homomorphism f : L — L’ is isotonic in the sense that

a < b implies f(a) <'f(b) for any a, b€ L.



