Progress in

POLYMER MATERIALS SCIENCE

Research, Development and Applications

Gennady E. Zaikov, DSc Oleg V. Stoyanov, DSc Elena I. Kulish, DSc Editors

PROGRESS IN POLYMER MATERIALS SCIENCE

Research, Development and Applications

Edited by

Gennady E. Zaikov, DSc, Oleg V. Stoyanov, DSc and Elena I. Kulish, DSc

© 2013 by Apple Academic Press Inc. 3333 Mistwell Crescent Oakville, ON L6L 0A2 Canada

Apple Academic Press Inc. 1613 Beaver Dam Road, Suite # 104 Point Pleasant, NJ 08742 USA

Exclusive worldwide distribution by CRC Press, a Taylor & Francis Group

International Standard Book Number: 978-1-926895-41-3 (Hardback)

Printed in the United States of America on acid-free paper

Library of Congress Control Number: 2012919713

Library and Archives Canada Cataloguing in Publication

Progress in polymer materials science: research, development and applications/edited by Gennady E. Zaikov, Oleg V. Stoyanov, and Elena I. Kulish.

Includes bibliographical references and index.

ISBN 978-1-926895-41-3

1. Polymers. 2. Polymers--Research. 3. Polymers--Industrial applications. 4. Materials science. I. Zaikov, G. E. (Gennadi i Efremovich), 1935- II. Stoyanov, Oleg V III. Kulish, Elena I

TA455.P58P76 2013

620.1'92

C2012-906367-3

Trademark Notice: Registered trademark of products or corporate names are used only for explanation and identification without intent to infringe.

This book contains information obtained from authentic and highly regarded sources. Reprinted material is quoted with permission and sources are indicated. A wide variety of references are listed. Reasonable efforts have been made to publish reliable data and information, but the authors, editors, and the publisher cannot assume responsibility for the validity of all materials or the consequences of their use. The author, editors, and the publisher have attempted to trace the copyright holders of all material reproduced in this publication and apologize to copyright holders if permission to publish in this form has not been obtained. If any copyright material has not been acknowledged, please write and let us know so we may rectify in any future reprint.

All rights reserved. No part of this work covered by the copyright hereon may be reproduced or used in any form or by any means—graphic, electronic, or mechanical, including photocopying, recording, taping, or information storage and retrieval systems—without the written permission of the publisher.

Apple Academic Press also publishes its books in a variety of electronic formats. Some content that appears in print may not be available in electronic format. For information about Apple Academic Press products, visit our website at www.appleacademicpress.com

PROGRESS IN POLYMER MATERIALS SCIENCE

Research, Development and Applications

此为试读,需要完整PDF请访问: www.ertongbook.com

About the Editors

Gennady E. Zaikov, DSc

Gennady E. Zaikov, DSc, is Head of the Polymer Division at the N. M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia, and a professor at Moscow State Academy of Fine Chemical Technology, Russia, as well as a professor at Kazan National Research Technological University, Kazan, Russia. He is also a prolific author, researcher, and lecturer. He has received several awards for his work, including the the Russian Federation Scholarship for Outstanding Scientists. He has been a member of many professional organizations and on the editorial boards of many international science journals.

Oleg V. Stoyanov, DSc

Oleg V. Stoyanov, DSc, is Professor at the Kazan National Research Technological University, Kazan, Russia. He is a world-renowned scientist in the field of chemistry and the physics of oligomers, polymers, composites, and nanocomposites.

Elena I. Kulish, DSc

Elena I. Kulish, DSc, is Professor and Deputy Head of the Laboratory of Semenov at Bashkirian State University in Ufa, Russia. She is a specialist in the field of high-molecular compounds and chemical kinetics.

List of Contributors

V. A. Babkin

403343 SF VolgSABU, c. Mikhailovka, region Volgograds, Michurina 21.

I. S. Belostotskaya

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin str. 4 Moscow-119334 Russia

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr. 29, Moscow-119991 Russia.

V. I. Berendvaev

Institute of Chemical Physics, RAS, Moscow, Russia.

V. V. Chernova

Bashkir State University 32 Zaki Validy Str., Ufa, the Republic of Bashkortostan-450074, Russia.

R. Ya. Deberdeev

Kazan National Research Technological University.

T. R. Deberdeev

Kazan National Research Technological University.

T. B. Durlakova

Emanual Institute of Biochemical Physics of the Russian Academy of Science.

E. A. Fatianova

Department General and Inorganic chemistry, South-West State University.

S. G. Fattakhov

Emanual Institute of Biochemical Physics of the Russian Academy of Science.

Arbuzov Institute of Organic and Physical Chemistry of the Russian Academy of Science.

G. V. Fetisov

Moscow Lomonosov State University, Chemistry Department, Moscow, Russia.

I. P. Generozova

Emanual Institute of Biochemical Physics of the Russian Academy of Science.

Timiryazev Institute of Plant Physiology of the Russian Academy of Science.

M. D. Goldfein

Saratov State University named after N. G. Chernyshevsky.

A. K. Haghi

University of Guilan, Rasht, Iran.

Y. C. Huang

Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei-10607, Taiwan.

A. A. Ischenko

Moscow Lomonosov State University of Fine Chemical Technology, Moscow, Russia.

S. V. Kolesov

The Institute of Organic Chemistry of the Ufa Scientific Center of the Russian Academy of Science 71 October Prospect, Ufa, the Republic of Bashkortostan-450054, Russia.

List of Contributors

N. L. Komissarova

X

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin str.4 Moscow-119334 Russia.

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr.29, Moscow-119991 Russia.

E. I. Korotkova

Tomsk Polytechnic University, 30 Lenin Street, 634050, Tomsk, Russia.

N. V. Kozhevnikov

Saratov State University named after N. G. Chernyshevsky.

N. I. Krikunova

Emanual Institute of Biochemical Physics of the Russian Academy of Science.

N. V. Kuvardin

Department "General and Inorganic chemistry", South-West State University.

E. I. Kulish

The Bashkir State University 32 Zaki Validy Str., Ufa, the Republic of Bashkortostan-450074, Russia.

J. Liaw

Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei-10607, Taiwan.

T. Z. Lygina

Central Scientific Research Institute of Geology Non-Ore Minerals, Zinin Street 4, 420097 Kazan, Russia.

G. G. Makarov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin str. 4 Moscow-119334 Russia

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr.29, Moscow-119991 Russia.

A. L. Maksimov

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin str. 4 Moscow-119334 Russia.

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr.29, Moscow-11991 Russia.

A. V. Malkova

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin str. 4 Moscow-119334 Russia

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr.29, Moscow-119991 Russia.

O. V. Mikhailov

Kazan National Research Technological University, K. Marx Street 68, 420015 Kazan, Russia.

T. A. Misharina

Emanual Institute of Biochemical Physics of the Russian Academy of Science.

V. M. Misin

Emanuel Institute of Biochemical Physics Russian Academy of Sciences, 4 Kosygin Street-119334 Moscow, Russia.

I. I. Nasyrov,

Kazan National Research Technological University.

N. I. Naumkina

Central Scientific-Research Institute of Geology Non-ore Minerals, Zinin Street 4, 420097 Kazan, Russia.

List of Contributors xi

A. I. Nekhaev

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin str.4 Moscow-119334 Russia.

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr.29, Moscow-119991 Russia.

F. F. Nivazy

Department "General and Inorganic chemistry", South-West State University.

A. A. Olkhov

Moscow Lomonosov State University of Fine Chemical Technology, Moscow, Russia.

A. E. Ordyan

Emanuel Institute of Biochemical Physics Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia

B. M. Rumvantsev

Institute of Chemical Physics, RAS, Moscow, Russia.

E. V. Samarin,

Kazan National Research Technological University.

N. N. Sazhina

Emanuel Institute of Biochemical Physics Russian Academy of Sciences, 4 Kosygin Street, 119334 Moscow, Russia

A. P. Shugaev

Emanual Institute of Biochemical Physics of the Russian Academy of Science.

Timiryazev Institute of Plant Physiology of the Russian Academy of Science.

N. V. Ulitin

Kazan National Research Technological University.

S. V. Usachev

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin str.4 Moscow-119334 Russia

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr.29, Moscow-119991 Russia.

S. D. Varfolomeev

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin str.4 Moscow-119334 Russia.

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr.29, Moscow-119991 Russia

V. B. Volieva

Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Kosygin str. 4 Moscow-119334 Russia

Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Leninsky pr.29, Moscow-119991 Russia.

V. P. Volodina

The Institute of Organic Chemistry of the Ufa Scientific Center of the Russian Academy of Science 71 October Prospect, Ufa, the Republic of Bashkortostan-450054, Russia.

G. E. Zaikov

Kazan National Research Technological University.

Institute of Biochemical Physics, Russian Academy of Sciences, 4 Kosygin Street, 117334 Moscow, Russia. Saratov State University named after N.G. Chernyshevsky.

xii List of Contributors

Emanuel Institute of Biochemical Physics Russian Academy of Sciences, 4 Kosygin Street-119334 Moscow, Russia

Department General and Inorganic chemistry, South-West State University.

D. S. Zakharov

403343 SF VolgSABU, c. Mikhailovka, region Volgograds. Michurina 21.

I. V. Zhigacheva

Emanual Institute of Biochemical Physics of the Russian Academy of Science.

V. P. Zubov

Moscow Lomonosov State University of Fine Chemical Technology, Moscow, Russia.

List of Abbreviations

NOMENCLATURES

Ef = Fabric modulus in warp direction (N/mm²)

Ey = Modulus of opposed yarn (N/tex)

Eyf=Modified modulus of opposed yarn (N/tex)

F = Pullout force(N)

FS = Static friction force (N)

FD = Dynamic friction force (N)

F = Normalized pullout force per number of crossovers (N)

FN = Normal load at each crossover (N)

N = Number of crossovers in direction of the pulled yarn

M = Number of crossovers in opposite direction of the pulled yarn

Tf = Lateral force in fabric length direction (N)

Ty = Force propagated in the opposed yarn direction (N)

Tyf = Corrected force propagated in the opposed yarn direction (N)

H = Fabric height before pulling (mm)

h' = Fabric height after pulling (mm)

L = Fabric length before pulling (mm)

L' = Fabric length after pulling (mm)

p = Distance between two crossovers in opposed direction before pulling (mm)

p' = Distance between two crossovers in opposed direction during yarn pulling (mm)

t = Fabric thickness before pulling (mm)

t' = Fabric thickness after pulling (mm)

x = Length of yarns between two crossovers in opposed direction before pulling (mm)

x' = Length of yarns between two crossovers in opposed direction during pulling (mm)

V = Sample volume before pulling (mm3)

V' =Sample volume during pulling (mm3)

 α = Fabric deformation angle

 Δ = Displacement of fabric in the direction of pulled yarn

 ΔS = Static displacement of fabric in the direction of pulled yarn

 ΔD = Dynamic displacement of the fabric in the direction of the pulled yarn

εy = Yarn strain between two crossovers in opposed yarn direction (lateral strain)

 μ = Yarn-to-yarn friction coefficient

 ρ = Linear density of the opposed yarn (tex)

 θ = Weave angle in the opposed direction, before pulling

 θ' = Weave angle in the opposed direction, during pulling

Subscript S = Defines the parameters in maximum static situation

Subscript D = Defines the parameters in dynamic situations

xiv List of Abbreviations

AA Acrylamide ACN Acetonitrile

AFD Average fiber diameter

AH 1-aminohexane
AIBN Azoisobutyronitrile
AlA Allylacrylate
AN Acrylonitrile

ANOVA Analysis of variance

AO Antioxidants

AOEM Acryloxyethylmaleate APS Ammonium persulfate

ASSSC Aqueous solution of sodium sulfocyanide

BA Butylacrylate

BAS Biological active substances
BDA 4,4'-bitetracarboxylic dianhydride

BET Brunauer-emmett-teller
BP Benzoyl peroxide

BTDA 4,4'-benzophenone tetracarboxylic dianhydride

CA Contact angle

CCD Central composite design

CHT Chitosan

CTC Charge transfer complexes
DGEBA Diglycide ether of bisphenol-A

DMAc N,N-Dimethylacetamide
DMF N-N, dimethylformamide
DMFA Dimethyl formamide

DPPF 1,1'-bis(diphenylphosphino)ferrocene

EA Ethylacrylate

EPG Electrophotographic
ER O2 Oxygen electroreduction
FAMEs Fatty acid methyl esters

FATD Field assisted thermo dissociation

FPU Foam polyurethane

GA Gallic acid

GC-MS Chromato-mass-spectrometry
HEPA High efficiency particulate air
HMDA Hexamethylenediamine

HQ Hydroquinone IA Itaconic acid IP Ion pairs

IS Stearates of iron
ITO Indium tin oxide,
IW Insufficient watering
LPO Lipid peroxidation
MA Methylacrylate

List of Abbreviations xv

MAA Methacrylic acid MAS Methallyl sulfonate

MF Melaphen

MFE Mercury film electrode
MMA Methylmethacrylate
NMP N-methyl-2-pyrrolidinone
ODPA 4,4'-oxydiphthalic anhydride

PAA polyacrylamide PAN Polyacrylonitrile

PES Photoelectric sensitivity

PI Polyimides PLA Polylacticacid

PSC Photostimulated current RCR Respiratory control rate

RFBR Russian Foundation of Basic Researches

RH Relative humidity
ROS Reactive oxygen species

RSM Response surface methodology SEM Scanning electron microscope

SSD Supersmall doses
SOD Superoxide dismutase
TCQM Tetracyanoquinodimethane

VA Vinylacetate VA-grams Voltammograms

XRD X-ray powder diffraction

ΔON Octane number

This book, with chapters by the editors and other experts in the field of polymer science, covers a broad selection of important research advances in the field, including an update on photoelectric characteristics, a study on the changes in the polymer molecular mass during hydrolysis, an update on enzymatic destruction, a study on a new type of bioadditive for motor fuel, an exploration of the interrelation of viscoelastic and electromagnetic properties of densely cross-linked polymers, and much more.

We carefully selected papers on many important topics, such as a paper that offers practical hints on the recovery of strain electromagnetic susceptibility relaxation, a numerical approach to the susceptibility of cross-linked polymers, an update on cross-linked polymers with nanoscale cross-site chains, a paper addressing the role of polymers in technologies and environment protection, an update on quantum-chemical calculation, and a paper that covers some aspects of silver nanoparticles. Also included are chapters that discuss the problems of mechanics of textile performance, new aspects of polymeric nanofibers, a mathematical model of nanofragment cross-linked polymers, and much more.

Editors and contributors hope that you will find the information provided here enlightening and useful, and we will be happy to receive from readers their comments and insights that may be helpful to us in our future research.

- Gennady E. Zaikov, DSc