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PREFACE

The Frontiers of Knowledge (to coin a phrase) are always on the
move. Today’s discovery will tomorrow be part of the mental furni-
ture of every research worker. By the end of next week it will be
in every course of graduate lectures. Within the month there will be
a clamour to have it in the undergraduate curriculum. Next year,
I do believe, it will seem so commonplace that it may be assumed
to be known by every schoolboy.

The process of advancing the line of settlements, and cultivating
and civilizing the new territory, takes place in stages. The original
papers are published, to the delight of their authors, and to the
critical eyes of their readers. Review articles then provide crude
sketch plans, elementary guides through the forests of the literature.
Then come the monographs, exact surveys, mapping out the ground
that has been won, adjusting claims for priority, putting each fact
or theory into its place.

Finally we need textbooks. There is a profound distinction between
a treatise and a textbook. A treatise expounds; a textbook explains.
It has never been supposed that a student could get into his head the
whole of physics, nor even the whole of any branch of physics. He
does not need to remember what he can easily discover by reference
to monographs, review articles and original papers. But he must learn
to read those references: he must learn the language in which they
are written: he must know the basic experimental facts, and general
theoretical principles, npon which his science is founded.

This book aims to present, as simply as possible, the elements of
the theory of the physics of perfect crystalline solids. It is a book
full of ideas, not facts. It is an exposition of the principles, not a
description of the phenomena.

A theory is an analysis of the properties of a hypothetical model.
In physics, which may almost be defined as the intellectual exercise
of subsuming the universe to mathematics, our models are mathe-
matical. The theories discussed in this book are mathematical
theories; the most important concepts in the field, such as ‘ the Fermi
Surface’, are abstract mathematical constructions, which cannot be
explained or understood properly without formal analysis.

What I have tried to do is to give a self-contained mathematical
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vi PREFACE

treatment of the simplest model that will demonstrate each principle.
If most of the interesting properties of superconductors can be
derived from a model of free electrons with a curtailed attractive
interaction, then that is the framework of the calculation. At this
stage, it is better to appreciate the conditions that are essential to
the appearance of the phenomenon at all, than it is to try to wield far
heavier equations, based upon more realistic but much more complex
physical specifications, in order to anticipate the observed deviations
from the simple formulae. The reader must go to the original papers
and treatises for these elaborations of the elementary models.

On the other hand, having defined the model, one must not shirk
the mathematical analysis. It is my experience that the direct
derivation of many simple, well-known formulae from first principles
is not easy to find in print. The original papers do not follow the
easiest path, the authors of reviews find the necessary exposition too
difficult—or beneath their dignity—and the treatises are too self-
conscious about completeness and rigour. I have tried to make the
mathematical argument complete in itself—or at least intelligible in
principle—without frequent appeal to that deus ex machina of the
tired author ‘it can be shown that...’. An advantage of trying to
cover such a wide field is that one can invoke general principles, such
as Bloch’s theorem and the theory of zones, to unify many branches
of the subject and save much mental effort.

How much is the reader expected to know already? He should be
acquainted with the elementary descriptive facts about solids—for
example, the free-electron theory of metals—as taught in under-
graduate courses. I also assume the elements of quantum mechanics
—especially the Schrédinger equation, perturbation theory, and the
theory of scattering—such as graduate students of experimental
physiocs are now expected to acquire. I have tried to keep the mathe-
matical techniques to that level; whenever the algebra threatened to
get difficult, I have stopped. There are no density matrices, bubble
diagrams, branch points, character tables, or other bits and pieces
of the apparatus of advanced theory; professional ‘theoreticians’
must look elsewhere for their fodder.

For the benefit of those reviewers who judge a book by what is
absent from it, let me admit that there is no serious discussion of
alloys, dislocations, F-centres, impurity centres, ete. There is nothing
about magnetic resonances associated with single atoms or nuclei,
and no attempt to interpret essentially macroscopic phenomena such
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PREFACE vit

as ferromagnetic domains, p-n junctions or the intermediate state
of a superconductor. The exclusion of all ‘except simple, perfect,
crystalline solids is artificial, but it is convenient, for it gives some
unity to the discourse, which is centred on the mathematical conse-
quences of lattice periodicity. Also, friends, life is short.

No novelty is claimed for this account of an active branch of
physics. These are the theories that are currently used, and accepted
as well established, by those who work in this field. There is no
attempt to criticize the theories, to discuss their validity as inter-
pretations of natural phenomena, to derive them with full mathe-
matical rigour, or to demonstrate the full flowering of their applica-
tions. The effort has been focused upon clarity of exposition. The
reader is being asked to grasp new concepts; let him suspend his
critical faculties until he has understood what the new ideas mean;
if, then, he is rightly sceptical, let him turn to the enormous literature
upon which this science is built, and help his unbelief from those
copious, if muddy, sources. I have deliberately refrained from making
any direct reference to the original papers; for such information the
student should consult the monographs and review articles listed at
the end of the book.

This book began as a course of lectures for graduate students of
Theoretical and Experimental Physicsin the University of Cambridge:
it was written in my last two terms, and completed in my last fow
weeks, of active membership of the staff of the Cavendish Laboratory.
It is a great privilege to have belonged, for nine years, to that peerless
institution. I am only too conscious of the impossibility of living up
to the unique standard that it has set, and continues to set, in the
world of physies. ‘

But the Cavendish is more than a famous laboratory; it is an abode
of humanity and friendship. May I offer thanks to those friends—
especially to Nevill Mott, to Brian Pippard, and to Volker Heine—
who brought me to Cambridge, whq welcomed me, tanught me, wisely
controverted me, abundantly assisted me, and generally made life
here agreeable, interesting and exciting. They have heard the music
of the spheres; and yet they know that science is made for man,

not man for science.
J. M. Z.

Cavendish Laboratory, Cambridge
June 1963
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viii

PREFACE TO THE SECOND EDITION

This new edition is meant still to conform to the principles expounded
in the above Preface. But eight years is about the doubling time of
modern scientific knowledge and solid state physicists have not been
idle in the interval. Most of the original text still stands, but several
new sections have been added, to cover topics that have come into
greater prominence lately or where there has been a significant shift
of understanding or emphasis. I have also attempted to make reference
in passing to a number of phenomena or fields of study that are
relevant to the basic theory, even if they cannot be discussed in detail.
Inthis way, the general scope of the book has been widened, to include,
for example, something about magnetic and non-magnetic impurities,
F-centres, surfaces, tunnelling, junctions, and type II supercon-
ductivity. But the general level of mathematical sophistication has
not been raised, even though the technical formalism of advanced
quantum theory is now becoming more commonplace in ¢his field.
. Iam most grateful to many colleagues—especially to Bob Chambers

here in Bristol and to Federico Garcia-Moliner in Madrid—for a
number of detailed comments of which I have tried to take account
in the new text. Bob Evans helped greatly by preparing a new index.
And lest the reader may feel that absence from Cambridge has been a
long period of exile, may I simply add that Bristol, too, is just as good
a 'ole to go to.

J.M.Z.

H.H. Wills Physics Laboratory, Bristol
March 1971
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CHAPTER 1

PERIODIC STRUCTURES

Again! again! again! THOMAS CAMPBELL

1.1 Translational symmetry

A theory of the physical properties of solids would be practically
impossible if the most stable structure for most solids were not a
regular crystal lattice. The N-body problem is reduced to manageable
proportions by the existence of translational symmetry. This means
that there exist basic veclors, a,, a,, a; such that the atomic structure
remains tnvariant under translation through any vector which is the sum
of integral multiples of these vectors.

In practice, thisisonly anideal. A laboratory specimen is necessarily
finite in size, so that we must not carry our structure through the
boundary. But the only regions where this matters are the layers of
atoms near the surface, and in a block of N atoms these constitute
only about N¥ atoms—say 1 atom in 108 in a macroscopic specimen.
Most crystalline solids are also structurally imperfect, with defects,
impurities and dislocations to disturb the regularity of arrangement
of the atoms. Such imperfections give rise to many interesting physical
phenomena, but we shall ignore them, except incidentally, in the
present discussion. We are mainly concerned here with the perfect
ideal solid, and with the properties it shows; the phenomena which
are associated with the solid as the matrix, vehicle, or background for
little bits of dirt, or tiny cracks and structural flaws, belong to a
different realm of discourse.

We represent the translational group by a space latlice or Bravais net.
Start from some point and then construct all points reached from it by
the basic translations. These are the lattice siles, defined by the set

l=1a +l,a,+;a,, (L.1)

where 1, 1,,[; are integers (Fig. 1).

But a solid is a physical structure—not a set of mathematical
points. Suppose that there are some atoms, etc., in the neighbourhocd
of our origin 0. The translational invariance insists that there must be
exactly similar atoms, placed similarly, about each lattice site (Fig. 2).
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2 PERIODIC STRUCTURES [1.1

It is obvious that we can define the physical arrangement of the
whole crystal if we specify the contents of a single unit cell—for
example, the parallelepiped subtended by the basic vectors a,, a,, a,.
The whole crystal is made up of endless repetitions of this object
stacked like bricks in a wall. But the actual definition of a unit cell
is to some extent arbitrary. It is obvious enough that any parallel-
epiped of the right size, shape and orientation would do—as we see in

L] L ] [ ] L]
L4 l L L] L4
a |
@ e @
o e,
Fig. 1

. Fig. 2. Alternative unit cells.

Fig. 2. What is, perhaps, not quite so obvious is that the shape can be
altered to some extent. Suppose, for example, that there is some
central symmetry about some point in the structure (and hence, about
all equivalent points). This would be a convenient point to choose as
the centre of a cell, itself with central symmetry. One can do this
systematically by constructing a Wigner—Seitz cell, that is, by drawing
the perpendicular bisector planes of the translation vectors from the
chosen centre to the nearest equivalent lattice sites. The volume inside
all the bisector planes is obviously a unit cell—it is the region whose
elements lie nearer to the chosen centre than to any other lattice
site,
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1.1] PERIODIC STRUCTURES 3

The unit cell can contain one or more atoms. Naturally, if it contains
only one atom, we centre that on the lattice site, and say that we have
a Bravais lattice. If there are several atoms per unit cell, then we have
a lattice with a basts. In most of what follows, we shall assume, without
special notice, that the structure is a Bravais lattice. This is for
simplicity; in reality only a few elementary solids, such as the alkali
metals, have this structure.

The science of crystallography is concerned with the enumeration
and classification of all possible types of crystal structure, and the
determination of the actual structure of actual crystalline solids.

Fig. 3. Wigner-Seitz cell.

Structures are classified according to their symmetry properties, such
as invariance under rotation about an axis, reflection in a plane, etc.
These syminetries are often of great importance in the simplification
of theoretical computations, and can be used with great power in the
discussion of the numbers of parameters that are necessary to define
the macroscopic properties of solids. However, to take full advantage
of this theory, one needs the mathematics of group theory, which would
take us too far away from our main topic. If we restrict ourselves
mainly to very simple solids, then most of the symmetry properties
can be discovered by inspection without formal algebraic analysis,
In any case, there are many excellent books on crystallography and
on group theory and its applications to the theory of solids.

In these books, the various types of Bravais lattice, ete., are set out
in detail. We shall consider here only one case, which exemplifies many
of the principles of the subject, and which is also of great importance
as a structure which is actually assumed by some elements. This is the
body-centred cubic (B.c.c.) structure illustrated in Fig. 4.
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PERIODIC STRUCTURES 1.1
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©
Fig. 4. Body-centred cubic lattice. (a) Cubic unit cell.

i ; (b) Generators
of the Bravais lattice. (¢) Wigner-Seitz cell
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1.1] PERIODIC STRUCTURES 5

Fig. 5. Stacking Wigner-Seitz cells of the B.c.C. lattice.

At first sight, this is a cubic lattice with two atoms per unit cell, or
two interpenetrating simple cubic sublattices defined by

l=1la,+l,a,+a, } (1.9)
U=l +pa+(0+da,+L+1a,
where I, 1,1, are all integers. But if we write
a, = }(—-a,+a,+a,),
a, = }(a,—a,+3a,), (1.3)
a, = }(a,+a,—a,),
we can generate all the points of both sublattices by
I=La, +lha,+1;2a, (1.4)

with 1, 1,, l; integers. We shall find ourselves at a cube centre, or
corner, according as (I, + 1, +1,) is odd, or even.

Thus (Fig. 4 (b)) this is really a Bravais lattice. Instead of using a
cubic unit cell we may use the Wigner—Seitz cell (Fig. 4(c)), which is
constructed by chopping off all the corners of a cube half way along
a diagonal from the centre to a corner point. This figure obviously has
the same symmetry as a cube—for example, the original vectors,
a_,a,,a, are axes of four-fold symmetry. It also shows, more clearly
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