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PREFACE TO THE SECOND EDITION

THE first edition of this book was prepared over the years 1966—70 when the
subject of phase transitions was undergoing a complete overhaul. The concepts of
scaling and universality had just taken root but the renormalization group approach,
which converted these concepts into a calculational tool, was still obscure. Not
surprisingly, my text of that time could not do justice to these emerging develop-
ments. Over the intervening years | have felt increasingly conscious of this rather
serious deficiency in the text; so when the time came to prepare a new edition,
my major effort went towards correcting that deficiency.

Despite the aforementioned shortcoming, the first edition of this book has
continued to be popular over the last twenty years or so. I, therefore, decided
not to tinker with it unnecessarily. Nevertheless, to make room for the new mate-
rial, T had to remove some sections from the present text which, I felt, were not
being used by the readers as much as the rest of the book was. This may turn out to
be a disappointment to some individuals but I trust they will understand the logic
behind it and, if need be, will go back to a copy of the first edition for reference.
I, on my part, hope that a good majority of the users will not be inconvenienced
by these deletions. As for the material retained, I have confined myself to making
only editorial changes. The subject of phase transitions and critical phenomena,
which has been my main focus of revision, has been treated in three new chap-
ters that provide a respectable coverage of the subject and essentially bring the
book up to date. These chapters, along with a collection of over sixty homework
problems, will, I believe, enhance the usefulness of the book for both students and
instructors.

The completion of this task has left me indebted to many. First of all, as
mentioned in the Preface to the first edition, I owe a considerable debt to those
who have written on this subject before and from whose writings I have benefitted
greatly. It is difficult to thank them all individually; the bibliography at the end of
the book is an obvious tribute to them. As for definitive help, I am most grateful
to Dr Surjit Singh who advised me expertly and assisted me generously in the
selection of the material that comprises Chapters 11-13 of the new text; without
his help, the final product might not have been as coherent as it now appears to
be. On the technical side, I am very thankful to Mrs Debbie Guenther who typed
the manuscript with exceptional skill and proof-read it with extreme care; her task
was clearly an arduous one but she performed it with good cheer — for which I
admire her greatly.

xi



xii Preface to the Second Edition

Finally, I wish to express my heart-felt appreciation for my wife who let me
devote myself fully to this task over a rather long period of time and waited for
its completion ungrudgingly.

RKP.
Waterloo, Ontario, Canada



PREFACE TO THE FIRST EDITION

THIS book has arisen out of the notes of lectures that I gave to the graduate
students at the McMaster University (1964 -5), the University of Alberta (1965-7),
the University of Waterloo (1969—71) and the University of Windsor (1970-1).
While the subject matter, in its finer details, has changed considerably during
the preparation of the manuscript, the style of presentation remains the same as
followed in these lectures.

Statistical mechanics is an indispensable tool for studying physical properties
of matter “in bulk” on the basis of the dynamical behavior of its “microscopic”
constituents. Founded on the well-laid principles of mathematical statistics on
one hand and hamiltonian mechanics on the other, the formalism of statistical
mechanics has proved to be of immense value to the physics of the last 100 years.
In view of the universality of its appeal, a basic knowledge of this subject is
considered essential for every student of physics, irrespective of the area(s) in
which he/she may be planning to specialize. To provide this knowledge, in a
manner that brings out the essence of the subject with due rigor but without undue
pain, is the main purpose of this work.

The fact that the dynamics of a physical system is represented by a set of quantum
states and the assertion that the thermodynamics of the system is determined by the
multiplicity of these states constitute the basis of our treatment. The fundamental
connection between the microscopic and the macroscopic descriptions of a system
is uncovered by investigating the conditions for equilibrium between two physical
systems in thermodynamic contact. This is best accomplished by working in the
spirit of the quantum theory right from the beginning; the entropy and other ther-
modynamic variables of the system then follow in a most natural manner. After
the formalism is developed, one may (if the situation permits) go over to the limit
of the classical statistics. This message may not be new, but here I have tried to
follow it as far as is reasonably possible in a textbook. In doing so, an attempt
has been made to keep the level of presentation fairly uniform so that the reader
does not encounter fluctuations of too wild a character.

This text is confined to the study of the equilibrium states of physical systems
and is intended to be used for a graduate course in statistical mechanics. Within
these bounds, the coverage is fairly wide and provides enough material for tailoring
a good two-semester course. The final choice always rests with the individual
instructor; 1, for one, regard Chapters 1-9 (minus a few sections from these
chapters plus a few sections from Chapter 13) as the “essential part” of such a
course. The contents of Chapters 10-12 are relatively advanced (not necessarily
difficult); the choice of material out of these chapters will depend entirely on the
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xiv Preface to the First Edition

taste of the instructor. To facilitate the understanding of the subject, the text has
been illustrated with a large number of graphs; to assess the understanding, a large
number of problems have been included. I hope these features are found useful.

I feel that one of the most essential aspects of teaching is to arouse the curiosity
of the students in their subject, and one of the most effective ways of doing this is
to discuss with them (in a reasonable measure, of course) the circumstances that
led to the emergence of the subject. One would, therefore, like to stop occasion-
ally to reflect upon the manner in which the various developments really came
about; at the same time, one may not like the flow of the text to be hampered
by the discontinuities arising from an intermittent addition of historical material.
Accordingly, 1 decided to include in this account an Historical Introduction to the
subject which stands separate from the main text. I trust the readers, especially
the instructors, will find it of interest.

For those who wish to continue their study of statistical mechanics beyond the
confines of this book, a fairly extensive bibliography is included. It contains a
variety of references — old as well as new, experimental as well as theoretical,
technical as well as pedagogical. I hope that this will make the book useful for a
wider readership.

The completion of this task has left me indebted to many. Like most authors, I
owe considerable debt to those who have written on the subject before. The bibli-
ography at the end of the book is the most obvious tribute to them; nevertheless, 1
would fike to mention, in particular, the works of the Ehrenfests, Fowler, Guggen-
heim, Schrodinger, Rushbrooke, ter Haar, Hill, Landau and Lifshitz, Huang, and
Kubo, which have been my constant reference for several years and have influ-
enced my understanding of the subject in a variety of ways. As for the preparation
of the text, I am indebted to Robert Teshima who drew most of the graphs and
checked most of the problems, to Ravindar Bansal, Vishwa Mittar and Surjit Singh
who went through the entire manuscript and made several suggestions that helped
me unkink the exposition at a number of points, to Mary Annetts who typed the
manuscript with exceptional patience, diligence and care, and to Fred Hetzel, Jim
Briante and Larry Kry who provided technical help during the preparation of the
final version.

As this work progressed I felt increasingly gratified towards Professors
F. C. Auluck and D. S. Kothari of the University of Delhi with whom I started my
career and who initiated me into the study of this subject, and towards Professor
R. C. Majumdar who took keen interest in my work on this and every other
project that 1 have undertaken from time to time. I am grateful to Dr D. ter
Haar of the University of Oxford who, as the general editor of this series, gave
valuable advice on various aspects of the preparation of the manuscript and made
several useful suggestions towards the improvement of the text. I am thankful
to Professors J.W. Leech, J. Grindlay and A.D. Singh Nagi of the University of
Waterloo for their interest and hospitality that went a long way in making this task
a pleasant one.

The final tribute must go to my wife whose cooperation and understanding, at
all stages of this project and against all odds, have been simply overwhelming.

RK.P.
Waterloo, Ontario, Canada
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HISTORICAL INTRODUCTION

STATISTICAL mechanics is a formalism which aims at explaining the physical prop-
erties of matter in bulk on the basis of the dynamical behavior of its microscopic
constituents. The scope of the formalism is almost as unlimited as the very range
of the natural phenomena, for in principle it is applicable to matter in any state
whatsoever. It has, in fact, been applied, with considerable success, to the study
of matter in the solid state, the liquid state or the gaseous state, matter composed
of several phases and/or several components, matter under extreme conditions of
density and temperature, matter in equilibrium with radiation (as, for example, in
astrophysics), matter in the form of a biological specimen, etc. Furthermore, the
formalism of statistical mechanics enables us to investigate the non-equilibrium
states of matter as well as the equilibrium states; indeed, these investigations help
us to understand the manner in which a physical system that happens to be “out of
equilibrium” at a given time ¢ approaches a “state of equilibrium” as time passes.

In contrast with the present status of its development, the success of its appli-
cations and the breadth of its scope, the beginnings of statistical mechanics were
rather modest. Barring certain primitive references, such as those of Gassendi,
Hooke, etc., the reai work started with the contemplations of Bernoulli (1738),
Herapath (1821) and Joule (1851) who, in their own individual ways, attempted to
lay a foundation for the so-called kinetic theory of gases—a discipline that finally
turned out to be the forerunner of statistical mechanics. The pioneering work of
these investigators established the fact that the pressure of a gas arose from the
motion of its molecules and could be computed by considering the dynamical influ-
ence of molecular bombardment on the walls of the container. Thus, Bernoulli and
Herapath could show that, if temperature remained constant, the pressure P of an
ordinary gas was inversely proportional to the volume V of the container (Boyle’s
law), and that it was essentially independent of the shape of the container. This, of
course, involved the explicit assumption that, at a given temperature T, the (mean)
speed of the molecules is independent of both pressure and volume. Bernoulli even
attempted to determine the (first-order) correction to this law, arising from the finite
size of the molecules, and showed that the volume V appearing in the statement
of the law should be replaced by (V — b), where b is the “actual” volume of the
molecules.! Joule was the first to show that the pressure P is directly proportional
to the square of the molecular speed ¢, which he had assumed to be the same for
all molecules. Kronig (1856) went a step further. Introducing the “quasi-statistical”
assumption that, at any time t, one-sixth of the molecules could be assumed to be
flying in each of the six “independent” directions, namely +x, —x, +y, —y, +z
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2 Historical Introduction

and —z, he derived the equation

= bnme?, )

where n is the number density of the molecules and m the molecular mass. Kronig,
too, assumed the molecular speed ¢ to be the same for all molecules; from (1), he
inferred that the kinetic energy of the molecules should be directly proportional
to the absolute temperature of the gas.

Kronig justified his method in these words: “The path of each molecule must be
so irregular that it will defy all attempts at calculation. However, according to the
laws of probability, one could assume a completely regular motion in place of a
completely irregular one!” It must, however, be noted that it is only because of the
special form of the summations appearing in the calculation of the pressure that
Kronig’s model leads to the same result as the one following from more refined
models. In other problems, such as the ones involving diffusion, viscosity or heat
conduction, this is no longer the case.

It was at this stage that Clausius entered the field. First of all, in 1857, he derived
the ideal-gas law under assumptions far less stringent than Kronig’s. He discarded
both leading assumptions of Krénig and showed that eqn. (1) was still true; of
course, ¢ now became the mean square speed of the molecules. In a later paper
(1859), Clausius introduced the concept of the mean free path and thus became
the first to analyze transport phenomena. It was in these studies that he introduced
the famous “Stosszahiansatz”~the hypothesis on the number of collisions (among
the molecules)~which, later on, played a prominent role in the monumental work
of Boltzmann.2 With Clausius, the introduction of the microscopic and statistical
points of view into the physical theory was definitive, rather than speculative.
Accordingly, Maxwell, in a popular article entitled “Molecules”, written for the
Encyclopedia Britannica, referred to him as the “principal founder of the kinetic
theory of gases”, while Gibbs, in his Clausius obituary notice, called him the
“father of statistical mechanics”.3

The work of Clausius attracted Maxwell to the field. He made his first appearance
with the memoir “Illustrations in the dynamical theory of gases” (1860), in which he
went much further than his predecessors by deriving his famous law of “distribution
of molecular speeds”. Maxwell’s derivation was based on elementary principles of
probability and was clearly inspired by the Gaussian law of “distribution of random
errors”. A derivation based on the requirement that “the equilibrium distribution of
molecular speeds, once acquired, should remain invariant under molecular colli-
sions” appeared in 1867. This led Maxwell to establish what is known as Maxwell’s
transport equation which, if skillfully used, leads to the same results as one gets
from the more fundamental equation due to Boltzmann.*

Maxwell’s contributions to the subject diminished considerably after his
appointment, in 1871, as the Cavendish Professor at Cambridge. By that time
Boltzmann had already made his first strides. In the period 1868—71 he generalized
Maxwell’s distribution law to polyatomic gases, also taking into account the
presence of external forces, if any; this gave rise to the famous Boltzmann factor
exp(—pBe), where ¢ denotes the foral energy of a molecule. These investigations
also led to the equipartition theorem. Boltzmann further showed that, just like
the original distribution of Maxwell, the generalized distribution {(which we now
call the Maxwell-Boltzmann distribution) is stationary with respect to molecular
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collisions. In 1872 came the celebrated H-theorem which provided a molecular
basis for the natural tendency of physical systems to approach, and stay in,
a state of equilibrium. This established a connection between the microscopic
approach (which characterizes statistical mechanics) and the phenomenological
approach (which characterized thermodynamics) much more transparently than
ever before; it also provided a direct method for computing the entropy of a given
physical system from purely microscopic considerations. As a corollary to the
H -theorem, Boltzmann showed that the Maxwell-Boltzmann distribution is the
only distribution that stays invariant under molecular collisions and that any other
distribution, under the influence of molecular collisions, ultimately goes over to a
Maxwell-Boltzmann distribution. In 1876 Boltzmann derived his famous transport
equation which, in the hands of Chapman and Enskog (1916~17), has proved to
be an extremely powerful tool for investigating macroscopic properties of systems
in non-equilibrium states.

Things, however, proved quite harsh for Boltzmann, His H-theorem, and
the consequent irreversible behavior of physical systems, came under heavy
attack, mainly from Loschmidt (1876—77) and Zermelo (1896). While Loschmidt
wondered how the consequences of this theorem could be reconciled with the
reversible character of the basic equations of motion of the molecules, Zermelo
.wondered how these consequences could be made to fit with the guasi-periodic
behavior of closed systems (which arose in view of the so-called Poincaré cycles).
Boltzmann defended himself against these attacks with all his might but couid
not convince his opponents of the correctness of his work. At the same time,
the energeticists, led by Mach and Ostwald, were criticizing the very (molecular)
basis of the kinetic theory,’ while Kelvin was emphasizing the “nineteenth-century
clouds hovering over the dynamical theory of light and heat”.®

All this left Boltzmann in a state of despair and induced in him a persecu-
tion complex.” He wrote in the introduction to the second volume of his treatise
Vorlesungen iiber Gastheorie (1898):8

[ 'am convinced that the attacks (on the kinetic theory) rest on misunderstandings and that the
role of the kinetic theory is not yet played out. In my opinion it would be a blow to science if
contemporary opposition were to cause Kinetic theory to sink into the oblivion which was the
fate suffered by the wave theory of light through the authority of Newton. I am aware of the
weakness of one individual against the prevailing currents of opinion. In order to insure that
not too much will have to be rediscovered when people return to the study of kinetic theory I
will present the most difficult and misunderstood parts of the subject in as clear a manner as
I can.

We shall not dwell any further on the kinetic theory; we would rather move
onto the development of the more sophisticated approach known as the ensemble
theory, which may in fact be regarded as the statistical mechanics proper.’ In this
approach, the dynamical state of a given system, as characterized by the gener-
alized coordinates ¢; and the generalized momenta p;, is represented by a phase
point G(q;, p;) in a phase space of appropriate dimensionality. The evolution of
the dynamical state in time is depicted by the trajectory of the G-point in the
phase space, the “geometry” of the trajectory being governed by the equations of
motion of the system and by the nature of the physical constraints imposed on it.
To develop an appropriate formalism, one considers the given system along with



