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Chapter 1 ‘
Loads and Codes

1.1 Introduction

Although not generally appreciated by lay people, it is not possible to design and
construct a structure that will remain safe against failure under all’conditions and at
all times.

The several reasons for a structure being prone to failures include: (a) the
strength of the various components of the structure cannot be assessed with full
certainty; (b) the loads that a structure will be called upon to sustain also cannot
be predicted with certainty; and (c) the condition of a structure may deteriorate
with time due to the effects of the environment, causing it to lose strength.
Because of these factors, there exists a probability that the strength of a structure
will at some time be exceeded by the loads that it has to sustain, resulting in the
failure of the structure. As noted in Sect. 1.3.2, the term failure is being used
here not only to signify the collapse of the whole structure, but also to include
the situation of the structure not being able to fulfil one or more of its intended
functions. )

The probability of failure of a structure can be reduced by increasing its design
strength, which invariably leads to a higher first cost. The role of the structural
engineer is to strike a socially acceptable balance between the risk of failure and the
cost of the structure. For example, a bridge can indeed be built to have the same
probability of failure as the pyramids of Giza, shown in Fig. 1.1. The cost of such a
bridge, however, is likely to be so high that society may not be prepared to pay for
it. By contrast, society may not be prepared to accept in a bridge the same high
frequency of failure as in an automobile.

It is sometimes argued that a good engineer can strike a balance intuitively
between the cost and safety of a structure, and that design codes tend to restrict the
creative ability of the designer. The ideal criteria for structural design, it is argued,
are those which merely require that a structure remain safe while fulfilling its
intended functions. Examples of the world’s most spectacular bridges, which

© Springer International Publishing Switzerland 2015 1
B. Bakht, A. Mufti, Bridges, DOI 10.1007/978-3-319-17843-1_1



2 I Loads and Codes

Fig. 1.1 Pyramids of Giza in Egypt, examples of structures with low probability of failure

have very long spans and for which there existed no design codes until recently, are
given in defence of the argument for having no design code at all.

It can be demonstrated readily that, due to the lack of a set of comprehensive
design criteria, different structures designed by different designers are likely to
have different probabilities of failure. This situation is particularly undesirable for
bridges on the same roadway system. Since all such bridges are likely to be
subjected to nearly the same maximum vehicle and environmental loads, the bridge
with the highest probability of failure will govern the capacity of the road; in this
case, it can be readily appreciated that the resources put into making the rest of the
bridges extra-safe are not being expended wisely.

Since the designs of short and medium span highway bridges are governed
mainly by vehicle weights, the design live loads constitute a very important part
of the design criteria. It is surprising that little attempt is usually made to ensure a
realistic correspondence between the actual vehicle weights in a jurisdiction and the
design live loads for its bridges.

This chapter presents a method using which any number of vehicles can be
compared with each other with respect to the maximum load effects they induce on
bridges; this method can also be used to formulate one or more design vehicles
corresponding to a given population of vehicles. The chapter also provides the
basics of the probabilistic methods, which are used to quantify safety in modern
design codes.

1.2 Vehicle Loads

Designs of most short and medium span highway bridges are governed predomi-
nantly by longitudinal moments and shears. The live load components of these
responses are caused by heavy commercial vehicles and are governed by the
spacing and weights of their axles. The task of quantifying the commercial vehicles
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Fig. 1.2 Notation for a series of point loads and their spacing

with respect to the load effects which they induce in bridges is made difficult by the
very large number of axle weight and spacing combinations that are encountered in
practice.

With the help of the method described in Sect. 1.2.1, a set of discrete loads can
be reduced to an equivalent uniformly distributed load (UDL) which gives very
closely the same maximum moments and shears in one-dimensional beams as the
discrete loads. The equivalent UDL, as explained later, is useful in comparing the
effects of different vehicles in all bridges.

1.2.1 Equivalent Base Length

It has been shown by Csagoly and Dorton (1978) that N discrete loads, with a total
weight of W, on a beam can be replaced by a UDL which is also of total weight W,
and has a length B,, so that the moment envelope along the beam due to the UDL is
very nearly the same to the moment envelope due to the set of discrete loads. The
length B, which is referred to as the equivalent base length, is given by the
following equation:

B = P - Z%W ){Z(Pfx-i)} (L)

=1

where N is the total number of discrete loads and other notation is as illustrated in
Fig. 1.2. The load closest to the centre of gravity of the set of loads is taken as the
reference load and distances of other loads x;, are measured with reference to this
load.
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It can be seen that Eq. (1.1) is independent of the span length of the beam; it
gives only approximate values of B,, which, as shown later, are accurate enough for
most practical purposes. Equation (1.1) is adapted from the following more accu-
rate expression which incorporates the span length, L, of the beam and which is
reported by Jung and Witecki (1971).

B, WZ|PX, LW;_,{Z Px,} (1.2)

=]
1.2.1.1 Accuracy

The percentage of error incurred in the determination of beam moments through the
simplified approach of equivalent base length defined by Eq. (1.1) is denoted by A

and quantified by:
Mg
=< |l—)-1 100 1.3

where Mp is the maximum beam moment at a reference point due to the uniformly
distributed load of length B,, obtained by Eq. (1.1), and M is the corresponding
maximum moment due to the given set of discrete loads.

Values of A are plotted in Fig. 1.3a against span length for moments in simply
supported beams due to a truck with five axles. It can be seen in this illustrative
example that the degree of error is within +1 % and —8 % for all reference points
considered. Values of A are large only where the magnitude of moment is small and
hence the magnitude of A is irrelevant.

Although Eq. (1.1) was developed for moments in simply supported beams, it is
also valid for shears and for continuous beams. In Fig. 1.3b, values of A are plotted
against the span length of a two-span continuous beam for maximum moments at
different points also due to a truck with five axles. It will be noted that the values of
A are somewhat larger than those of their counterparts in the simply supported
beam, but are still small, being within +1 % and —10 %. In both beams, A reduces
with the increase in span length.

The actual envelope of maximum moments in a simply supported beam with a
span of 10.67 m span to a five-axle truck is compared in Fig. 1.4 with the envelope
of maximum moments due to the UDL of length B,, obtained by Eq. (1.1). The
closeness of the two envelopes is striking. The figure also shows the variation of A
along the span. It can be seen that the values of A are very small in the middle half
of the bridge, where moments are usually considered in design, being within £ 5 %
in this region.

Near the supports, where the magnitudes of moments are small, A becomes as
high as about —13 % but is not of concern in design.

It has been shown by Csagoly and Dorton (1973) that the value of A increases as
the number of discrete loads is reduced. However, even for a set of three



