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Preface

Multiferroics have been at the cutting edge of research and development in materials for
ICTs for over a decade. During this period steady improvements in fundamental knowl-
edge have been made. At the same time, nanoscale phenomena have assumed an increasing
importance. Progress has benefited from the strong synergies with activities in nanoscale
ferroelectrics, which are at a more mature stage. Multifunctionality and nanoscaling are
widely acknowledged at present as the keys to the miniaturization of solid-state electronics,
and specifically nanoferronics, which is emerging as a new area with large technological
potential. The topic has now reached a maturity level that allows, and actually requires,
books that provide a comprehensive revision of the topic, and an in-depth analysis of future
trends. These are the objectives of Nanoscale Ferroelectrics and Multiferroics: Key Pro-
cessing and Characterization Issues, and Nanoscale Effects.

It is intended to provide the increasing number of scientists and engineers, who are
approaching the topic from a range of backgrounds, with a reference/guide text that should
help them to roadmap their R&D activities. The volume reviews the key issues in processing
and characterization of nanoscale ferroelectrics and multiferroics, and provides a compre-
hensive description of their properties. An emphasis is put on differentiating size effects
of extrinsic ones like boundary or interface effects. Nanoscale novel, recently described,
phenomena that are bound to be behind major advancement in the field during the coming
years are also addressed.

The book is devised to stress, and take full advantage of, the synergies between nanoscale
ferroelectrics and multiferroics. It covers materials nanostructured at all levels, from
ceramic technologies like ferroelectric nanopowders, bulk nanostructured ceramics and
thick films, and magnetoelectric nanocomposites, to thin films, either polycrystalline layer
heterostructures or epitaxial systems, and to nanoscale free-standing objects with specific
geometries, such as nanowires and tubes at different levels of development, but all tech-
nologically relevant. Nanostructuring is a requirement of the current tendency to minia-
turization of ceramic technologies for microelectronics that imposes stringent conditions
on processing, and has a deep impact on functional properties. Also, nanostructuring ulti-
mately results in the ever-decreasing processing temperatures of thin films, a key issue to
the integration of these multifunctional oxides with silicon devices and flexoelectronics.
Last but not least, a range of novel physical phenomena has been described in nanoscale
ferroelectrics and multiferroics that have the potential to enable a range of disruptive tech-
nologies, like magnetoelectric memory. Overall, the book reviews the current state of the
art of these materials, stressing a range of specific topics at the cutting edge of research.

This project springs from the high-level European scientific knowledge platform built
within the COST Action Single and Multiphase Ferroics and Multiferroics with Restricted
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Geometries (SIMUFER, ref. MP0904), active between March 2010 and May 2014. COST
(European Cooperation in Science and Technology) is a pan-European networking instru-
ment that allows researchers from COST member countries and cooperating states to jointly
develop their ideas and initiatives in a field or topic of common interest. SIMUFER estab-
lished a multidisciplinary scientific network of groups from 24 European countries and
7 non-COST countries, experienced in synthesis, advanced characterization, and model-
ing of all nanoscale ferroics, single-phase multiferroics, and ferroic-based combinations of
dissimilar materials. This book project arises primarily from their expertise, though it has
been open to world renowned experts when necessary. Chapter contributors have been care-
fully selected and have all made major contributions to knowledge of the respective topics;
overall, they are among the most respected scientists in the field.



Introduction

Why Nanoscale Ferroelectrics
and Multiferroics?

Miguel Alguerd’, J. Marty Gregg?, and Liliana Mitoseriu®

!Instituto de Ciencia de Materiales de Madrid (ICMM), Consejo Superior de Investigaciones
Cientificas (CSIC), Spain
2School of Maths and Physics, Queen’s University Belfast, Northern Ireland, United Kingdom
3 Faculty of Physics, University “Alexandru loan Cuza”, Romania

I.1 Ferroics and Multiferroics

Single-phase ferroics are compounds that present one of the three (currently expanded
to four) ferroic properties: ferroelectricity, ferromagnetism, or ferroelasticity, to which
ferrotoroidicity has recently been added. The common feature of the four types of ferroics
is the appearance of the ferroic order; either it is a spontaneous electrical polarization,
magnetization, strain, or toroidal moment, in a phase transition from a high-temperature
prototype phase to the low-temperature ferroic phase, related by a group/subgroup
relationship. This transition is always accompanied by a decrease in symmetry and the
splitting of the ferroic phase into domains (regions with a different orientation of the
order parameter). A second feature, the direct consequence of the switchable nature of
the order parameter and of the domain dynamics, is the characteristic ferroic hysteresis
loop; that is, a distinctive hysteretic dependence of the order parameter on its conjugated
field (electric or magnetic field, mechanical stress or toroidal source vector, respectively),
with two remnant states of opposite sign [1]. The four phenomena are schematically
shown in Figure 1.1. Ferroics are highly topical, advanced functional materials that have
not only enabled a range of mature and ubiquitous related technologies (like magnetic

Nanoscale Ferroelectrics and Multiferroics: Key Processing and Characterization Issues, and Nanoscale Effects,
First Edition. Edited by Miguel Alguerd, J. Marty Gregg, and Liliana Mitoseriu.
© 2016 John Wiley & Sons, Ltd. Published 2016 by John Wiley & Sons, Ltd.
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Figure 1.1 Schematics of domains and hysteretic switching for the four ferroic phenomena.
Adapted by permission of IOP Publishing from [1]. © IOP Publishing. All rights reserved.

or ferroelectric information recording, ceramic ultrasound transducers, or shape memory
alloys, to name only a few examples) but are also under extensive research for a number
of novel, potentially disruptive, applications [2].

There are also compounds that simultaneously present two (or more) ferroic phenomena,
known as multiferroics, among which those showing coexistence of ferroelectricity and
ferromagnetism (initially termed ferroelectromagnets) are receiving increasing attention
[3,4]. This is not only because of their inherent multifunctionality but also for the fact that
they are liable to show magnetoelectric coupling, and have thus the potential to enable the
electrical control of magnetism (and the magnetic control of polarization) [5].

This book specifically deals with ferroelectrics and ferroelectromagnets (either robust
ferromagnetic materials or canted antiferromagnets showing weak ferromagnetism), though
the general term multiferroics will be used following the current tendency to name
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ferroelectric—ferromagnetic materials, and in general any type of magnetic ordering com-
pounds, in this way.

The choice of addressing them together only acknowledges the deep-rooted relationship
between the two sets of materials; multiferroism requires ferroelectricity and thus multi-
ferroics have to be electrically insulating to be functional (an issue not always acknowl-
edged). This feature is not easily found in magnetic materials, most of them being metallic
or narrow-band gap semiconductors. Indeed, chemical bonding requirements suggest the
two ferroic phenomena to be incompatible [6]; transition metal or rare earth atomic species
with partially filled outer d or felectronic shells (and unpaired electrons) are necessary for
magnetism, while model ferroelectric perovskite oxides are characterized by covalently
bonded transition metals (to oxygen) with empty d orbitals [7]. Nevertheless, an ever-
increasing number of multiferroic single-phase materials have been reported over the last
decade, exploring alternative mechanisms of ferroelectricity.

1.2 Ferroelectric Materials and Related Technologies

Ferroelectrics are thus materials that present a spontaneous electrical polarization, whose
direction can be reversed with an electric field (by nucleation and growth of inversion
domains, resulting in the distinctive ferroelectric hysteresis). The ferroic phase appears at
a ferroelectric transition, driven by electrical polarization [8], which can be either of a dis-
placive type, the most common one, associated with a crystal structure instability induced
by condensation of a transverse optical phonon (the soft mode) [9], or of an order—disorder
type. Its macroscopic phenomenological description according to Landau’s theory of phase
transitions can be found in Chapter 19.

All ferroelectrics are also pyroelectric and piezoelectric, as well as electrooptic, which
turns them into a prototype of multifunctionality (even before magnetic order is added).
Moreover, they are the only materials that can present these properties, intrinsically linked
to the crystal structure, in polycrystalline form (thanks to the ability to reorient the polar-
ization under an electric field).

Though ferroelectricity was first described for hydrogen-bonded compounds (Rochelle
salt being the first one in 1921), and there are also examples among tellurides, fluorides,
and iodides [10], a number of electroactive polymers like poly(vinylidene fluoride) [11],
and recent reports of ferroelectric metal organic frameworks [12], clearly oxides stand out
as the ones that have enabled a range of successful ferroelectric technologies.

I.2.1 Ferroelectric Bulk Technologies

Perhaps the best-known ferroelectric, and also the first oxide shown to be so in 1944, is
BaTiO4 with a perovskite structure. This model compound presents the ferroelectric transi-
tion at ~393 K and a succession of low-temperature polymorphic phase transitions between
ferroelectric phases with decreasing symmetry, from tetragonal to orthorhombic and to
rhombohedral, for which the polar axis (and thus the direction of the spontaneous polariza-
tion defined by the displacement of the Ti** cation from the centre of the oxygen octahedra)
changes. Polymorphism is a quite common phenomenon in ferroelectric perovskite oxides
and plays a very important role in their functionality. BaTiOj is also the base composition
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of multilayer ceramic capacitors (after the chemical tailoring of the ferroelectric transition
down to room temperature), one of the two large-scale, mature bulk ceramic ferroelectric
technologies. This material and its modifications are extensively addressed in this book (see
Chapters 1, 11, 12, 15, and 18), for the miniaturization of these capacitors is a case study of
the current trends in microelectronics that require the nanostructuring of the ceramic lay-
ers. In the last few years, nanostructured BaTiO5 and its solid solutions have become the
main candidates for active materials used in capacitive building blocks for energy storage
applications.

The second successful technology is piezoelectric ceramics for electromechanical trans-
duction. The state of the art material for these applications, which range from sensors
and actuators (like accelerometers or positioning systems for scanning probe microscopy,
respectively) and their combination in smart systems (to implement active vibration damp-
ing), to ultrasound generation and sensing (for medical imaging or non-destructive test-
ing), and to submarine acoustics, is Pb(Zr,Ti)O5, which also has a perovskite structure.
This is an oxide solid solution, for which the best properties are found at a morphotropic
phase boundary (MPB) between rhombohedral and tetragonal ferroelectric polymorphs, for
which a monoclinic phase has been recently described [13]. This material can be regarded as
a modification of PbTiO;, a second model ferroelectric oxide that also shows a succession
of polymorphic phase transitions, yet induced by hydrostatic pressure instead of temper-
ature [14], which has been placed at one of these ferroelectric instabilities (the MPB) by
building up chemical pressure (achieved by substitution of Zr** for Ti**). As a matter of
fact, the very good electromechanical response of this material is a combination of two
effects, a crystal contribution, associated with the existence of a transverse lattice insta-
bility at the monoclinic tetragonal boundary [15], and an extrinsic contribution, associated
with the fact that ferroelectric perovskite oxides are also ferroelastic (and therefore multi-
ferroic, but not ferroelectromagnets). The spontaneous strain develops at the ferroelectric
transition along with the polarization (the two parameters are intrinsically coupled), and as
a consequence ferrroelectric—ferroelastic domains appear (in addition to polarization inver-
sion domains).The non-180° (90° in the tetragonal case) domain walls are mobile under
stress and electric field (unlike 180° walls that only move under an electric field), giving
way to a wall contribution to the piezoelectric effect [16]. Moreover, the domain dynamics is
enhanced at the morphotropic phase boundary. In addition, chemical (or doping) engineer-
ing of Pb(Zr,Ti)O; has been developed that enables a range of soft and hard piezoelectric
ceramics with tailored properties for specific applications. Piezoelectric ceramics are also
being considered for novel applications, such as energy harvesting [17] and magnetoelec-
tric composites (see later). Further explanations of the mechanisms, along with a review of
alternative materials, can be found in Chapter 16. This technology is not oblivious to the
general miniaturization trend and nanostructuring can also be anticipated.

Other examples of ferroelectric ceramic bulk technologies are infrared (IR) cameras for
night vision (and, in general, IR detectors for a range of applications exploiting the pyro-
electric effect) and electrooptic devices. Modifications of PbTiO; like (Pb,La)TiO; and
transparent (Pb,La)(Zr,Ti)O; are usually the material choices, respectively. An excellent
review of ferroelectric ceramics and related technologies can be found in [18].

Also successful ferroelectric single-crystal technologies are presently available. The best
examples are surface acoustic wave (SAW) devices for radio frequency and microwave
signal conditioning, based on ferroelectric LiNbO; substrates. At the very end of the



