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. Preface

This monograph assembles the handouts for Computer Science 255
at Stanford University, an advanced course on the analysis of algorithms.
The course presents examples of the major paradigms used in the precise
analysis of algorithms, emphasizing some of the more difficult ones. Much
of the material is drawn from the starred sections of The Art of Computer

Programming, Volume 3 [Knuth III].

Analysis of algorithms, as a discipline, relies heavily on both-com-
puter science and mathematics. This report is a mathematical look at the
synthesis—emphasizing the mathematical perspective, but using motivation
and examples from ‘computer science. It covers binomial identities, recur-
rence relations, operator methods and asymptotic analysis, hopefully in a
format that is terse enough for easy reference and yet detailed enough to
be of use to those who have not attended Computer Science 255. However,
it is assumed that the reader is familiar with the fundamentals of complex
variable theory and combinatorial analysis.

Winter 1980 was the fourth offering of Computer Science 255 and credit
is due to the previous teachers and staff—Leo Guibas, Scott Drysdale, Sam
Bent, Andy Yao and Phyllis Winkler—for their detailed contributions to the
documentation of the course. Portions of earlier handouts are incorporated
in this monograph. Harry Mairson, Andrei Broder, Ken Clarkson, and Jeff
Vitter contributed helpful comments and corrections, and the preparation
of these notes was also aided by the facilities of Xerox corporation and the
support of NSF and Hertz graduate fellowships. The material itself was
typeset with the TEX composition system, using the Computer Modern
family of fonts recently developed with the METRAFONT system.
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Chapter 1

Binomial Identities

1.1 Summary of Useful Identities

So that the identities themselves do not become buried on an obscure
page, we summarize them immediately:

_ 7\ k n_k integer n
(z+y)" = ‘Lk:(k)z LA or n real and |z/y| < 1 (£.1)
r r—1 r—1 real r
(k) - ( k ) * (k — 1)’ integer k (L5
n\ n integer n > 0
(k) - (n — k)’ integer k (2.8)
r r{r—1 real r
(k) - E(k — ])’ integer k £ 0 (14
Z":(r+k)__(r+n+l) real r (1.5)
= k n integer n > 0
Z(k)=(n+l), integer m,n > 0 - (1.6)
=, \m m+1

-\ _ , frtk—1 real r
(k)_( 2 ( k ) integer k (1.7)
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OO =-(0CE) e, as
S()Gi)=(7)  meern a9

r s _[r+s integer n
; (k)(n - k) o (r + n)’ integer r > 0 (1.10)
r\[s+k k__ A 3 integer n
Z:(Ic)( n )(—l) =1 (n — r)' integer r > 0 (L.11)

T (r—k\(s+k r+s+1 integer m,n,r,8 > 0
Z — , = (1.12)
gy T n m+n+1 oL

One particularly confusing aspect of binomial coefficients is the ease
with which a familiar formula can be rendered unrecognizable by a few
transformations. Because of their chameleon character there is no sub-
stitute for practice of manipulations with binomial coefficients. The reader
is referred to Section 1.2.6 of [Knuth I] for an explanation of the formulas
above and for a useful collection of exercises. A large catalog of sums of
binomial coefficients, arranged according to the number of terms in the
numerator and denominator of the summand, appears in [Gould 72].
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1.2 Deriving the Identities

Here is an easy way to remember many of the identities that do not in-
clude an alternating —1. The number of paths through a rectangular lattice
with sides m and n is (/™). By cutting the lattice along different axes, and
counting the paths according to where they cross the cut, the identities are
derived. The pictures below show different ways of partitioning the paths
and the parameter k used in the sum.

A sum based on when the
path hits the top edge
derives identity (1.5)

) Counting paths according
K I to when they cross a vertical
line derives identity (1.12)

) Similarly, a sum based on
k a slanted line derives
identity (1.9)

N\

More complicated identities can be derived by successive applications
of the identities given on pages 5 and 6. One example appears in “A
trivial algorithm whose analysis isn’t,” by A. Jonassen and D. E. Knuth
[Jonassen 78]. The sum

=2()-) () 13

is evaluated by a lengthy series of elementary transformations. Rather than
include their derivation, we give instead a derivation suggested by I. Gessel.
He attributes this elegant technique, the “method of coefficients,” to G. P.
Egorychev.
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First replace k by m — k, giving

N ) e Y

Using (z")f(z) for the coefficient of z™ in f(r) we can express portions of
the sum with generating funetions:

(T)(‘%)_k = (a*)(1 - 22)™ (1.15)

(2: B :") = (") 1 +y)Pm (1.16)
The whole sum is
g (_%)m ;(Ik)(l _ 21)m<ym—k)(1 + y)2m—2k. (117)

We can remove (y™ %) from the sum by noting that (y™ %) = (y™)y*:

.S=(_;)'"<g l+y)2’"Z(xk)(l—21:)"‘(( o )z)k. (1.18)

Finally, this seemingly aimless wandering comes to a glorious finish. The
sum in the last formula is a simple substitution for z:

_ 2y \™
S=(-2™y™1+y)*"(1-—= ] ; 1.19
(2 + (1 - s ) (119
§=(=2"™y™1+ )" (1.20)
The solution follows immediately:
S={2_ (m/2), m even; (1.21)
0, m odd.

From a theoretical standpoint, it would be nice to unify binomial
identities in one coherent scheme, much as the physicist seeks a unified
field theory. Unfortunately no single scheme covers everything. There arg
however several “meta” coneepts that explain the existence of large classes
of binomial identities. We will briefly describe two of these: inverse relations
and operator calculus.
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1.3 Inverse Relations

One of the simplest set of inverse relations is the pair

a;, = Zk:(—l)"(:)bk, b, = ;(—1)*(:)% (1.22)

which follows from the orthogonal relation

b = i(—l)"“‘(?)(i). (1.23)

i=k

And this is just a specialization of equation (1.11) with s equal to zero. In
general an inverse relation will pair two series so that individual terms of
one can be computed from the terms of the other. There will always be an
associated orthogonal relation.

In his book Combinatorial Identities, John Riordan devotes several
chapters to inverse relations. Since inverse relations are even more likely
to change appearance than the binomial identities we have seen already,
care must be taken to recognize relations that are basically the same. For
this purpose Riordan describes several transformations and then groups
equivalent inverse pairs into broad categories.- His transformations and
classifications are summarized below.

Since we are working with a pair of equations, we can move terms from
one equation to another by replacements like &, = (—1)*bj, obtaining a

new pair
a, = ;(Z) o Y= Z(—I)H”(Z)ak. (1.24)

k

An inverse relation corresponds to a pair of lower triangular matrices whose
product is the identity. By reflecting across the diagonal we can derive yet
another pair

=3 (:)bk, by = Z(—l)"+"(:)ak. (1.25)

k>n k>n

Finally, note that we can multiply both sides of the orthogonal relation
(1.23) by almost any function that is unity when n = k, without affecting
the orthogonal character of the equation.

The last equation, (1.25), has an extremely useful combinatorial sig-
nificance. Suppose we have a large collection of random events. Let b,, be
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the probability that exactly n events oceur, and let a,, be the sum of the
probability of n simultaneous events taken over all selections of n events.
Roughly speaking a, can be viewed as a sloppy way of computing the
probability that exactly n events occur since it makes no allowance for the
possibility of more than n events. The left side of (1.25) shows how a, is
_ inflated. However, a, is often easier to compute and the right hand side

of equation (1.25), the “principle of inclusion and exclusion,” provides a
practical way of obtaining b,,.

Equations (1.22), (1.24) and (1.25) are in the simplest class of inverse
relations. [Riordan 68] lists several other classes like the Chebyshev-type:

n/2] [n/2)

n n n—k
= 5" (} Jon—2x n = ) . nok.  (1.26
an P (k) 2k b E( )n—k( k )a 2k- (1.26)

Not surprisingly the inverse relations are often associated with their name-
sakes among the orthogonal polynomials used in interpolation.

The Gould-type class of inverse relations,

o= ()1 o (1.27)

k

o) = e (T e 0

has a very curious property. A Chinese mathematician L. Hsu recently
discovered that the binomial coefficients containing a and b are inessential
to the functioning of the inversion. In fact if we choose {a;} and {b;} to be
any two sequences of numbers such that

Y(z,n) = H (a; + b;x) # 0, integer z,n > 0, (1.29)

=1

we obtain a general inversion:

= S -0¥( Jetkman (1.30)
k

o = S04 Jouss + kbesr b+ )7 e (13D

k
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Stirling numbers are used in another well known pair of inverse rela-
tions:

n
an = Z(—l)"—"[;:]bk, [¢] = Stirling numbers of the first kind; (1.32)

k=0
n

b, = Z {:}ak, {*} = Stirling numbers of the second kind.  (1.33)
k=0

Here a,, is usually z2 and b, is =", so that these formulas convert between
factorials and powers of z.

We cannot explore all the inverse relations here, but it is worth noting
that many generating functions can be converted to inverse relations. A
pair of power series 2(z) and z*(z) such that z(z)2*(z) = 1 provide a pair
of relations:

a(z) = 2(z)b(z), and b(z)= z"(z)a(x). (1.34)

For example, we can let 2(z) = (1 — z)”? and 2*(z) = (1 — z)?; clearly
z(z) 2*(z) = 1, so we can proceed to compute formulas for the coefficients
in a(z) and bz):

g ;(—1)"(‘:)%_;:, b = )_;j(—l)*(Z)a,._k. (1.35)

This pair is a member of the Gould class of inverse relations.

Inverse relations are partially responsible for the proliferation of bino-
mial identities. If one member of an inverse pair can be embedded in a
binomial identity, then the other member of the pair will often provide
a new identity. Inverse relations can salso enter directly into the analysis
of an algorithm. The study of radix exchange sort, for example, uses the
simple set.of relations (1.22) introduced at the beginning of this section.
For details see [Knuth III; exercises 5.2.2-36 and $.3.2-38].
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1.4 Operator Calculus

Here are several common operators, and their effects on functions:

The shift operator E:
E®p(z) = p(z + a) (1.36)

The derivative operator D:
Dplz) = p/(2) (1.37)

The difference operator A = E! — I
Ap(z) =p(z + 1) — p(z) (1.38)

Following [Rota 75] we will find it useful to define a D-type operator
to be any operator that behaves like the derivative operator. Specifically,
an operator Q is D-type if it is shift invariant (QE* = E® Q) and if Qz is
a nonzero constant. From these two properties it is possible to show that
Q operators resemble the derivative:

i) @a = 0 for every constant a
ii) @(nth degree polynomial) = ((n — 1)st degree polynomial).

We can push this resemblance even further by defining a sequence of

basic polynomials for @ as follows:

i) po(z) =1

ii) pn(0)=0, n>0

iii) QPn(”) = npp_1(z).
The third property means that whenever @ is applied to its basic polyno-
mials the result is similar to D applied to 1,z,z2%.... For example, A is a
D-type operator with basic polynomials 22 = z(z — 1)...(z — n + 1).

It turns out that D-type operators are a very useful generalization of
the derivative. Taylor’s expansion theorem can be cast in the general form

T ; ﬁk'!iQ" (1.39)

where
T is any shift invariant operator;
Q is a D-type operator with basic polynomials pi(z);
ar = [T pi(2)],—o-



