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Preface to the Revised Third Printing

This revision of the 1983 second edition of ““Elliptic Partial Differential Equations
of Second Order” corresponds to the Russian edition, published in 1989, in which
we essentially updated the previous version to 1984. The additional text relates to
the boundary Holder derivative estimates of Nikolai Krylov, which provided a
fundamental component of the further development of the classical theory of
elliptic (and parabolic), fully nonlinear equations in higher dimensions. In
our presentation we adapted a simplification of Krylov’s approach due to Luis
CafTarelli.

The theory of nonlinear second order elliptic equations has continued to
flourish during the last fifteen years and, in a brief epilogue to this volume, we
signal some of the major advances. Although a proper treatment would necessi-
tate at least another monograph, it is our hope that this book, most of whose text
is now more than twenty years old, can continue to serve as background for these
and future developments.

Since our first edition we have become indebted to numerous colleagues, all
over the globe. It was particularly pleasant in recent years to make and renew
friendships with our Russian colleagues, Olga Ladyzhenskaya, Nina Ural’tseva,
Nina Ivochkina, Nikolai Krylov and Mikhail Safonov, who have contributed so
much to this area. Sadly, we mourn the passing away in 1996 of Ennico De Giorgi,
whose brilliant discovery forty years ago opened the door to the higher-dimen-
sional nonlinear theory.

October 1997 David Gilbarg - Neil S. Trudinger



Preface to the First Edition

This volume is intended as an essentially self-contained exposition of portions of the
theory of second order quasilinear elliptic partial differential equations, with
emphasis on the Dirichlet problem in bounded domains. It grew out of lecture
notes for graduate courses by the authors at Stanford University, the final material
extending well beyond the scope of these courses. By including preparatory
chapters on topics such as potential theory and functional analysis, we have
attempted to make the work accessible to a broad spectrum of readers. Above all,
we hope the readers of this book will gain an appreciation of the iultitude of
ingenious barehanded techniques that have been developed in the study of elliptic
equations and have become part of the repertoire of analysis.

Many individuals have assisted us during the evolution of this work over the
past several years. In particular, we are grateful for the valuable discussions
with L. M. Simon and his contributions in Sections 15.4 to 15.8; for the helpful
comments and corrections of J. M. Cross, A. S. Geue, J. Nash, P. Trudinger and
B. Turkington; for the contributions of G. Williams in Section 10.5 and of A. §.
Geue in Section 10.6; and for the impeccably typed manuscript which resulted
from the dedicated efforts of Isolde Field at Stanford and Anna Zalucki at Canberra.
The research of the authors connected with this volume was supported in part by
the National Science Foundation.

August 1977 David Gilbarg Neil S. Trudinger
Stanford Canberra

Note: The Second Edition includes a new, additional Chapter 9. Consequently Chapters 10
and 135 referred to above have become Chapters 11 and 16.
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Chapter |

Introduction

Summary

The principal objective of this work is the systematic development of the general
theory of second order quasilinear elliptic equations and of the linear theory
required in the process. This means we shall be concerned with the solvability of
boundary value problems (primarily the Dirichlet problem) and related general
properties of solutions of linear equations

(L.1) Luza”(x)D,.Ju-i-b‘(x)Dlu+c{x)u=f(x). ij=1,2,....n,
and of quasilinear equations
(1.2) Qu=a“(x, u, Du)D, u+b(x, u, Du)=0.

Here Du=(Du, ..., D,u), where Du=Cu/éx;, D ju=¢%u/Cx, éx;, etc., and the
summation convention is understood. The ellipticity of these equations is expressed
by the fact that the coefficient matrix [a”] is (in each case) positive definite in the
domain of the respective arguments. We refer to an equation as uniformly elliptic
if the ratio y of maximum to minimum eigenvalue of the matrix [a"] is bounded.
We shall be concerned with both non-uniformly and uniformly elliptic equations.

The classical prototypes of linear elliptic equations are of course Laplace’s
equation )

Au= Z D,u=0

and its inhomogeneous counterpart, Poisson’s equation du= f. Probably the best
known example of a quasilinear elliptic equation is the minimal surface equation

2 D(Du/(1 + |Du)?)!'?)=0,

which arises in the problem of least area. This equation is non-uniformly elliptic,
with y=1+|Du|?. The properties of the differential operators in these examples
motivate much of the theory of the general classes of equations discussed in this
book.



2 1. Introduction

The relevant linear theory is developed in Chapters 2-9(and in part of Chapter
12). Although this material has independent interest, the emphasis here is on
aspects needed for application to nonlinear problems. Thus the theory stresses weak
hypotheses on the coefficients and passes over many of the important classical and
modern results on linear elliptic equations.

Since we are ultimately interested in classical solutions of equation (1.2), what s
required at some point is an underlying theory of classical solutions for a suffi-
ciently large class of linear equations. This is provided by the Schauder theory in
Chapter 6, which is an essentially complete theory for the class of equations (1.1)
with Holder continuous coefficients. Whereas such equations enjoy a definitive
existence and regularity theory for classical solutions, corresponding results cease
to be valid for equations in which the coefficients are assumed only continuous.

A natural starting point for the study of classical solutions is the theory of
Laplace’s and Poisson's equations. This is the content of Chapters 2 and 4. In
anticipation of later developments the Dirichlet problem for harmonic functions
with continuous boundary values is approached through the Perron method of
subharmonic functions. This emphasizes the maximum principle, and with it the
barrier concept for studying boundary behavior, in arguments that are readily
extended to more general situations in later chapters. In Chapter 4 we derive the
basic Hélder estimates for Poisson's equation from an analysis of the Newtonian
potential. The principal result here (see Theorems 4.6, 4.8) states that all C*(£)
solutions of Poisson's equation, du=/f, in a domain Q of R" satisfy a uniform
estimate in any subset Q'c <

(1.3) Nelics. sy SC(SUP [0+ 11 f lcaggy),
9]

where C is a constant depending only on a (0 <a< 1), the dimension » and dist
(&, 02); (for notation see Section 4.1). This interior estimate (interior since
Q'c =Q) can be extended to a global estimate for solutions with sufficiently
smooth boundary values provided the boundary Q2 is also sufficiently smooth.
In Chapter 4 estimates up to the boundary are established only for hyperplane and
spherical boundaries, but these suffice for the later applications.

The climax of the theory of classical solutions of linear second order elliptic
equations is achieved in the Schauder theory, which is developed in modified and
expanded form in Chapter 6. Essentially, this theory extends the results of potential
theory to the class of equations (1.1) having Holder continuous coefficients. This is
accomplished by the simple but fundamental device of regarding the equation
locally as a perturbation of the constant coefficient equation obtained by fixing the
leading coefficients at their values at a single point. A careful calculation based on
the above mentioned estimates for Poisson's equation yields the same inequality
(1.3) for any C3-* solution of (1.1), where the constant C now depends also on the
bounds and Holder constants of the coefficients and in addition on the minimum
and maximum eigenvalues of the coefficient matrix {a”] in Q. These results are
stated as interior estimates in terms of weighted interior norms (Theorem 6.2) and,
in the case of sufficiently smooth boundary data, as global estimates in terms of

Tarar SO



3

Summary

global norms (Theorem 6.6). Here we meet the important and recurring concept of
an aprioriestimate ; namely, an estimate (in terms of given data) valid for all possible
solutions of a class of problems even if the hypotheses do not guarantee the
existence of such solutions. A major part of this book is devoted to the establish-
ment of apriori bounds for various problems. (We have taken the liberty of
replacing the latin a priori with the single word apriori, which will be used
throughout.)

The importance cf such apriori estimates is visible in several applications in
Chapter 6, among them in establishing the solvability of the Dirichlet problem by
the method of continuity (Theorem 6.8) and in proving the higher order regularity
of C? solutions under appropriate smoothness hypotheses (Theorems 6.17, 6.19).
In both cases the estimates provide the necessary compactness properties for
certain classes of solutions, from which the desired results are easily inferred.

We remark on several additional features of Chapter 6, which are not needed
for the later developments but which broaden the scope of the basic Schauder
theory. In Section 6.5 it is seen that for continuous boundary values and a suitably
wide class of domains the proof of solvability of the Dirichlet problem for (1.1) can
be achieved entirely with interior estimates, thereby simplifying the structure of the
theory. The results of Section 6.6 extend the existence theory for the Dirichlet
problem to certain classes of non-uniformly elliptic equations. Here we see how
relations between geometric properties of the boundary and the degenerate ellipti-
city at the boundary determine the continuous assumption of boundary values.
The methods are based on barrier arguments that foreshadow analogous (but
deeper) results for nonlinear equations in Part 1. In Section 6.7 we extend the
theory of (1.1) to the regular oblique derivative problem. The method is basically
an extrapolation to these boundary conditions of the earlier treatment of Poisson's
equation and the Schauder theory (without barrier arguments, however).

In the preceding considerations, especially in the existence theory and barrier
arguments, the maximum principle for the operator L (when ¢<0) plays an
essential part. This is a special feature of second order elliptic equations that
simplifies and strengthens the theory. The basic facts concerning the maximum
principle, as well as illustrative applications of comparison methods, are contained
in Chapter 3. The maximum principle provides the earliest and simplest apriori
estimates of the general theory. It is of considerable interest that all the estimates of
Chapters 4 and 6 can be derived entirely from comparison arguments based on the
maximum principle, without any mention of the Newtonian potential or integrals.

An alternative and more general approach to linear problems, without poten-
tial theory, can be achieved by Hilbert space methods based on generalized or
weak solutions, as in Chapter 8. To be more specific, let L’ be a second order
differential operator, with principal part of divergence Sorm, defined by

L'u=Dya%(x)D u+ b'(x)u) + c'(x)Du + d(x)u.

If the coefficients are sufficiently smooth, then clearly this operator falls within the
class discussed in Chapter 6. However, even if the coefficients are in a much wider
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class and u is only weakly differentiable (in the sense of Chapter 7), one can still
define weak or generalized solutions of L'u=g in appropriate function classes.
In particular, if the coefficients a'/, b', ¢ are bounded and measurable in Q and g
1s an integrable function in €, let us call ¥ a weak or generalized solution of
Lu=gin Qifue W' Q) (as defined in Chapter 7) and

(1.4) f[(aiiju +buyDw —('Dut + duyr] dx = — f_qv dx
0 Q
for all test functions v € Cy(R). It is clear that if the coefficients and ¢ are suffi-
ciently smooth and u € C?*(£2), then u is also a classical solution.
We can now speak also of weak solutions u of the generalized Dirichlet problem,

Lu=gin Q, u=¢ on 09,

if u is a weak solution satisfying u—¢@ € W-#(Q). where ¢ € W' }(Q). Assuming
that the minimum eigenvalue of [a"/] is bounded away from zero in . that

(1.5) Db +d<0

in the weak sense, and that also g€ L%(Q). we find in Theorem 8.3 that the
generalized Dirichlet problem has a unique solution u € W' 3(Q). Condition (1.5).
which is the analogue of ¢<O0 in (1.1), assures a maximum principle for weak
solutions of L'u>0(<0) (Theorem 8.1) and hence uniqueness for the generalized
Dirichlet problem. Existence of a solution then follows from the Fredholm alter-
native for the operator L' (Theorem 8.6), which is proved by an application of the
Riesz representation theorem in the Hilbert space W, ().

The major part of Chapter 8 is taken up with the regularity theory for weak
solutions. Additional regularity of the coefficients in (1.4) implies that the solutions
belong to higher W* 2 spaces (Theorems 8.8, 8.10). It follows from the Sobolev
imbedding theorems in Chapter 7 that weak solutions are in fact classical solutions
provided the coefficients are sufficiently regular. Global regularity of these
solutions is inferred by extending interior regularity to the boundary when the
boundary data are sufliciently smooth (Theorems 8.13, 8.14).

The regularity theory of weak solutions and the associated pointwise estimates
are fundamental to the nonlinear theory. These results provide the starting point
for the “'bootstrap™ arguments that are typical of nonlinear problems. Briefly, the
idea here is to start with weak solutions of a quasilinear equation, regarding them
as weak solutions of related /inear equations obtained by inserting them into the
coefficients, and then to proceed by establishing improved regularity of these
solutions. Starting anew with the latter solutions and repeating the process, still
further regularity is assured. and so on, until the original weak solutions are finally
proved to be suitably smooth. This is the essence of the regularity proofs for the
older variational problems and is implicit in the nonlinear theory presented here.

The Holder estimates for weak solutions that are so vital for the nonlinear
theory are derived in Chapter 8 from Harnack inequalities based on the Moser
iteration technique (Theorems 8.17, 8.18, 8.20, 8.24). These results generalize the
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basic apriori Holder estimate of De Giorgi, which provided the initial breakthrough
in the theory of quasilinear equations in more than two independent variables.
The arguments rest on integral estimates for weak solutions u derived from judi-
cious choice of test functions v in (1.4). The test function technique is the dominant
theme in the derivation of estimates throughout most of this work.

In this edition we have added new material to Chapter 8 covering the Wiener
criterion for regular boundary points, eigenvalues and eigenfunctions, and Holder
estimates for first derivatives of solutions of linear divergence structure equations.

We conclude Part I of the present edition with a new chapter, Chapter 9,
concerning strong solutions of linear elliptic equations. These are solutions which
possess second derivatives, at least in a weak sense, and satisfy (1.1) almost every-
where. Two strands are interwoven in this chapter. First we derive a maximum
principle of Aleksandrov, and a related apriori bound (Theorem 9.1) for solutions
in the Sobolev space W?:"(Q2), thereby extending certain basic results from Chapter 3
to nonclassical solutions. Later in the chapter, these results are applied to establish
various pointwise estimates, including the recent Holder and Harnack estimates of
Krylov and Safonov (Theorems 9.20, 9.22; Corollaries 9.24, 9.25). The other strand
in this chapter is the L? theory of linear second-order elliptic equations that is
analogous to the Schauder theory of Chapter 6. The basic estimate for Poisson’s
equation, namely the Calderon-Zygmund inequality (Theorem 9.9) is derived
through the Marcinkiewicz interpolation theorem, although without the use of
Fourier transform methods. Interior and global estimates in the Sobolev spaces
W2P(£), 1 < p < o, are established in Theorems 9.11, 9.13 and applied to the
Dirichlet problem for strong solutions, in Theorem 9.15 and Corollary 9.18.

Part 11 of this book is devoted largely to the Dirichlet problem and related
estimates for quasilinear equations. The results concern in part the general operator
(1.2) while others apply especially to operators of divergence form

(1.6) Qu=div A(x, u, Du)+ B(x, u, Du)

where A(x, z, p) and B(x, z, p) are respectively vector and scalar functions defined
on QxR xR".

Chapter 10 extends maximum and comparison principles (analogous to results
in Chapter 3) to solutions and subsolutions of quasilinear equations. We mention
in particular apriori bounds for solutions of Qu>0 (=0), where Qisa divergence
form operator satisfying certain structure conditions more general than ellipticity
(Theorem 10.9).

Chapter 11 provides the basic framework for the solution of the Dirichlet
problem in the following chapters. We are concerned principally with classical
solutions, and the equations may be uniformly or non-uniformly elliptic. Under
suitable general hypotheses any globally smooth solution u of the boundary value
problem for Qu=0 in a domain Q with smooth boundary can be viewed as a
fixed point, u=Tu, of a compact operator T from C'*®) to C"*(Q) for any
2 € (0,1). In the applications the function defined by Tu. for any ue CH*(8), is the
unique solution of the /inear problem obtained by inserting u into the coefficients
of Q. The Leray-Schauder fixed point theorem (proved in Chapter 11) then implies
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the existence of a solution of the boundary value problem provided an apriori
bound. in C'-%(£). can be established for the solutions of a related continuous
family of equations u=T(u; ), 0<o<1. where T(u; |)=Tu (Theorems [1.4,
11.6). The establishment of such bounds for certain broad classes of Dirichlet
problems is the object of Chapters 13-15.

The general procedure for obtaining the required apriori bound for possible
solutions u 1s a four-step process involving successive estimation of Sl:)p ful.

sup |Dul. sup |Dul. and fjulj¢ci .5, for some a>0. Each of these estimates pre-
on 0

supposes the preceding ones and the final bound on flullc:. .5, completes the
existence proof based on the Leray-Schauder theorem.
As already observed, bounds on sup |u| are discussed in Chapter 10. In the later
n

chapters this bound is either assumed in the hypotheses or is implied by properties
of the equation.

Equations in two variables (Chapter 12) occupy a special place in the theory.
This i1s due in part to the distinctive methods that have been developed for them
and also to the results. some of which have no counterpart for equations in more
than two variables. The method of quasiconformal mappings and arguments based
on divergence structure equations (cf. Chapter 11) are both applicable to equations
in two variables and yield relatively easily the desired C*** apriori estimates, from
which a solution of the Dirichlet problem follows readily.

Of particular interest is the fact that solutions of uniformly elliptic linear equa-
tions in two variables satisfy an apriori C!* estimate depending only on the
ellipticity constants and bounds on the coefficients, without any regularity assump-
tions (Theorem 12.4). Such a C!-* estimate, or even the existence of a gradient
bound under the same general conditions is unknown for equations in more than
two variables. Another special feature of the two-dimensional theory is the
existence of an apriori C' bound|Du| < K for solutions of arbitrary elliptic equations

(1.7 au, .+ 2bu , +cu, =0,

where u is continuous on the closure of a bounded convex domain  and has
boundary value ¢ on éQ satisfying a bounded slope (or three-point) condition
with constant K. This classical result, usually based on a theorem of Radé on
saddle surfaces, is given an elementary proof in Lemma 12.6. The stated gradient
bound, which is valid for all solutions u of the general quasilinear equation (1.7)
in whicha=a(x, y, u, u,, u,), etc., and such that u=¢ on &Q, reduces this Dirichlet
problem to the case of uniformly elliptic equations treated in Theorem 12.5. In
Theorem 12.7 we obtain a solution of the general Dirichlet problem for (1.7),
assuming local Holder continuity of the coefficients and a bounded slope condition
for the boundary data (without further smoothness restrictions on the data).
Chapters 13, 14 and 15 are devoted to the derivation of the gradient estimates
involved in the existence procedure described above. In Chapter 13, we prove the
fundamental results of Ladyzhenskaya and Ural'tseva on Hélder estimates of
derivatives of elliptic quasilinear equations. In Chapter 14 we study the estimation
of the gradient of solutions of elliptic quasilinear equations on the boundary.



