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PREFACE

Functional analysis is the study of certain topological-algebraic structures
and of the methods by which knowledge of these structures can be applied
to analytic problems.

A good introductory text on this subject should include a presentation
of its axiomatics (i.e., of the general theory of topological vector spaces), it
should treat at least a few topics in some depth, and it should contain some
interesting applications to other branches of mathematics. I hope that the
present book meets these criteria.

The subject is huge and is growing rapidly. (The bibliography in
volume I of [4] contains 96 pages and goes only to 1957.) In order to write
a book of moderate size, it was therefore necessary to select certain areas
and to ignore others. I fully realize that almost any expert who looks at the
table of contents will find that some of his or her (and my) favorite topics
are missing, but this seems unavoidable. It was not my intention to write an
encyclopedic treatise. I wanted to write a book that would open the way to
further exploration.

This is the reason for omitting many of the more esoteric topics that
might have been included in the presentation of the general theory of topo-
logical vector spaces. For instance, there is no discussion of uniform spaces,
of Moore-Smith convergence, of nets, or of filters. The notion of complete-
ness occurs only in the context of metric spaces. Bornological spaces are
not mentioned, nor are barreled ones. Duality is of course presented, but
not in its utmost generality. Integration of vector-valued functions is treated
strictly as a tool; attention is confined to continuous integrands, with values
in a Fréchet space.

Nevertheless, the material of Part 1 is fully adequate for almost all
applications to concrete problems. And this is what ought to be stressed in
such a course: The close interplay between the abstract and the concrete is
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not only the most useful aspect of the whole subject but also the most
fascinating one.

Here are some further features of the selected material. A fairly large
part of the general theory is presented without the assumption of local con-
vexity. The basic properties of compact operators are derived from the
duality theory in Banach spaces. The Krein-Milman theorem on the exis-
tence of extreme points is used in several ways in Chapter 5. The theory of
distributions and Fourier transforms is worked out in fair detail and is
applied (in two very brief chapters) to two problems in partial differential
equations, as well as to Wiener’s tauberian theorem and two of its applica-
tions. The spectral theorem is derived from the theory of Banach algebras
(specifically, from the Gelfand-Naimark characterization of commutative
B*-algebras); this is perhaps not the shortest way, but it is an easy one. The
symbolic calculus in Banach algebras is discussed in considerable detail; so
are involutions and positive functionals.

I assume familiarity with the theory of measure and Lebesgue integra-
tion (including such facts as the completeness of the I?-spaces), with some
basic properties of holomorphic functions (such as the general form of
Cauchy’s theorem, and Runge’s theorem), and with the elementary topo-
logical background that goes with these two analytic topics. Some other
topological facts are briefly presented in Appendix A. Almost no algebraic
background is needed, beyond the knowledge of what a homomorphism is.

Historical references are gathered in Appendix B. Some of these refer
to the original sources, and some to more recent books, papers, or exposi-
tory articles in which further references can be found. There are, of course,
many items that are not documented at all. In no case does the absence of a
specific reference imply any claim to originality on my part.

Most of the applications are in Chapters 5, 8, and 9. Some are in
Chapter 11 and in the more than 250 exercises; many of these are supplied
with hints. The interdependence of the chapters is indicated in the diagram
on the following page.

Most of the applications contained in Chapter 5 can be taken up well
before the first four chapters are completed. It has therefore been suggested
that it might be good pedagogy to insert them into the text earlier, as soon
as the required theoretical background is established. However, in order
not to interrupt the presentation of the theory in this way, I have instead
started Chapter 5 with a short indication of the background that is needed
for each item. This should make it easy to study the applications as early as
possible, if so desired.

In the first edition, a fairly large part of Chapter 10 dealt with differ-
entiation in Banach algebras. Twenty years ago this (then recent) material
looked interesting and promising, but it does not seem to have led any-
where, and I have deleted it. On the other hand, I have added a few items
which were easy to fit into the existing text: the mean ergodic theorem of
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von Neumann, the Hille-Yosida theorem on semigroups of operators, a
couple of fixed point theorems, Bonsall’s surprising application of the
closed range theorem, and Lomonosov’s spectacular invariant subspace
theorem. 1 have also rewritten a few sections in order to clarify certain
details, and 1 have shortened and simplified some proofs.

Most of these changes have been made in response to much-
appreciated suggestions by numerous friends and colleagues. I especially
want to mention Justin Peters and Ralph Raimi, who wrote detailed
critiques of the first edition, and the Russian translator of the first edition
who added quite a few relevant footnotes to the text. My thanks to all of

them!
Walter Rudin
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CHAPTER

1

TOPOLOGICAL
VECTOR
SPACES

Introduction

1.1 Many problems that analysts study are not primarily concerned with
a single object such as a function, a measure, or an operator, but they deal
instead with large classes of such objects. Most of the interesting classes
that occur in this way turn out to be vector spaces, either with real scalars
or with complex ones. Since limit processes play a role in every analytic
problem (explicitly or implicitly), it should be no surprise that these vector
spaces are supplied with metrics, or at least with topologies, that bear some
natural relation to the objects of which the spaces are made up. The sim-
plest and most important way of doing this is to introduce a norm. The
resulting structure (defined below) is called a normed vector space, or a
normed linear space, or simply a normed space.

Throughout this book, the term vector space will refer to a vector
space over the complex field € or over the real field R. For the sake of
completeness, detailed definitions are given in Section 1.4.

1.2 Normed spaces A vector space X is said to be a normed space if to
every x € X there is associated a nonnegative real number ||x||, called the
norm of x, in such a way that
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(@) lx+yll < x| + [yl for all x and y in X,
(b) lax|i = || ||x}l if x € X and « is a scalar,
(c) lIxil>0ifx#0.

The word “norm™ is also used to denote the function that maps x
to || x|i.

Every normed space may be regarded as a metric space, in which the
distance d(x, y) between x and y is ||x — y||. The relevant properties of d are

(i) 0<d(x,y) < oo for all x and y,
(i)) d(x,y)=0if and only if x = y,
(i) d(x, y) = d(y, x) for all x and y,
(iv) d(x,2) < d(x, y) + d(y, z) for all x, y, z.

In any metric space, the open ball with center at x and radius r is
the set

B,(x) = {y: d(x, y) < r}.
In particular, if X is a normed space, the sets
B,O) = {x: Ix| <1} and  B,(0)={x: x| <1}

are the open unit ball and the closed unit ball of X, respectively.

By declaring a subset of a metric space to be open if and only if it is a
(possibly empty) union of open balls, a topology is obtained. (See Section
1.5)) It is quite easy to verify that the vector space operations (addition and
scalar multiplication) are continuous in this topology, if the metric is
derived from a norm, as above.

A Banach space is a normed space which is complete in the metric
defined by its norm; this means that every Cauchy sequence is required to
converge.

1.3 Many of the best-known function spaces are Banach spaces. Let us
mention just a few types: spaces of continuous functions on compact
spaces; the familiar I”-spaces that occur in integration theory; Hilbert
spaces — the closest relatives of euclidean spaces; certain spaces of differen-
tiable functions; spaces of continuous linear mappings from one Banach
space into another; Banach algebras. All of these will occur later on in the
text.

But there are also many important spaces that do not fit into this
framework. Here are some examples:

(@) C(Q), the space of all continuous complex functions on some open set
Q in a euclidean space R".
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(b) H(Q), the space of all holomorphic functions in some open set € in the
complex plane. :

(¢) Cg, the space of all infinitely differentiable complex functions on R"
that vanish outside some fixed compact set K with nonempty interior.

(d The test function spaces used in the theory of distributions, and the
distributions themselves.

These spaces carry natural topologies that cannot be induced by
norms, as we shall see later. They, as well as the normed spaces, are exam-
ples of topological vector spaces, a concept that pervades all of functional
analysis.

After this brief attempt at motivation, here are the detailed definitions,
followed (in Section 1.9) by a preview of some of the results of Chapter 1.

1.4 Vector spaces The letters R and ¢ will always denote the field of
real numbers and the field of complex numbers, respectively. For the
moment, let ® stand for either R or €. A scalar is a member of the scalar
field ®. A vector space over ® is a set X, whose elements are called vectors,
and in which two operations, addition and scalar multiplication, are defined,
with the following familiar algebraic properties:

(@) To every pair of vectors x and y corresponds a vector x + y, in such a
way that

xX+y=y+x and x+(y+2)=(x+y +z

X contains a unique vector 0 (the zero vector or origin of X) such that
x + 0 = x for every x € X; and to each x € X corresponds a unique
vector —x such that x + (—x) = 0.

(b) To every pair (a, x) with « € ® and x € X corresponds a vector ax, in
such a way that :

Ix = x, apx) = (af)x,
and such that the two distributive laws
ox + y) = ax + ay, (@ + f)x = ax + Bx
hold.

The symbol 0 will of course also be used for the zero element of the
scalar field.

A real vector space is one for which ® = R; a complex vector space is
one for which ® = €. Any statement about vector spaces in which the
scalar field is not explicitly mentioned is to be understood to apply to both
of these cases.
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If X is a vector space, 4 ¢ X, Bc X, x € X, and 4 € ®, the following
notations will be used:

x+A={x+aae A},

x—A={x—a:ae A},

A+B={a+b:aec A, be B},
AA = {Aa: a € A}.

In particular (taking A = —1), — 4 denotes the set of all additive inverses of
members of A. '

A word of warning: With these conventions, it may happen that 24 #
A + A (Exercise 1).

A set Y = X is called a subspace of X if Y is itself a vector space (with
respect to the same operations, of course). One checks easily that this
happens if and only if 0 € Y and

aY + Y <Y

for all scalars « and B.
A set C c X is said to be convex if

tC+(t—-pCcC O<t<1).

In other words, it is required that C should contain tx + (1 — )y if x € C,
yeCand0<t< 1.

A set B X is said to be balanced if aB < B for every a € ® with
|al < 1.

A vector space X has dimension n (dim X =n) if X has a basis
{uy, ..., u,}. This means that every x € X has a unique representation of the
form

xX=ou + - +a,u, (a; € D).

Ifdim X = n for some n, X is said to have finite dimension. If X = {0}, then
dim X =0.

Example. If X = ¢ (a one-dimensional vector space over the scalar
field €), the balanced sets are ¢, the empty set &%, and every circular
disc (open or closed) centered at 0. If X = R? (a two-dimensional
vector space over the scalar field R), there are many more balanced
sets; any line segment with midpoint at (0, 0) will do. The point is
that, in spite of the well-known and obvious identification of ¢ with
R?, these two are entirely different as far as their vector space struc-
ture is concerned.

1.5 Topological spaces A topological space is a set S in which a collec-
tion t of subsets (called open sets) has been specified, with the following
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properties: S is open, J is open, the intersection of any two open sets is
open, and the union of every collection of open sets is open. Such a collec-
tion t is called a ropology on S. When clarity seems to demand it, the topo-
logical space corresponding to the topology 7 will be written (S, 1) rather
than S.

Here is some of the standard vocabulary that will be used, if § and
are as above.

A set E < S is closed if and only if its complement is open. The closure
E of E is the intersection of all closed sets that contain E. The interior E° of
E is the union of all open sets that are subsets of E. A neighborhood of a
point p € S is any open set that contains p. (S, 1) is a Hausdorff space, and 1
is a Hausdorff topology, if distinct points of S have disjoint neighborhoods.
A set K = S is compact if every open cover of K has a finite subcover. A
collection 7’ 7 is a base for 7 if every member of 7 (that is, every open set)
is a union of members of 7. A collection y of neighborhoods of a point
p € S is a local base at p if every neighborhood of p contains a member of y.

If Ec S and if o is the collection of all intersections E n V, with
V € 1, then g is a topology on E, as is easily verified; we call this the topol-
ogy that E inherits from S.

If a topology 7 is induced by a metric d (see Section 1.2) we say that d
and 1 are compatible with each other.

A sequence {x,} in a Hausdorff space X converges to a point x € X
(or lim,, ., x, = x) if every neighborhood of x contains all but finitely many
of the points x,,.

1.6 Topological vector spaces Suppose t is a topology on a vector
space X such that

(a) every point of X is a closed set, and
(b) the vector space operations are continuous with respect to t.

Under these conditions, 7 is said to be a vector topology on X, and X
is a topological vector space.

Here is a more precise way of stating (a): For every x € X, the set {x}
which has x as its only member is a closed set.

In many texts, (a) is omitted from the definition of a topological
vector space. Since (a) is satisfied in almost every application, and since
most theorems of interest require (@) in their hypotheses, it seems best to
include it in the axioms. [Theorem 1.12 will show that (a) and (b) together
imply that 7 is a Hausdorff topology.]

To say that addition is continuous means, by definition, that the
mapping ‘

(x, V)= x+y



