¥ Education kit EMBBEENEZHMET (B2EIHR)

PRACTICAL OBJECT-ORIENTED
DESIGN WITH UML

SECOND EDITION

EAHERTUMLER

] Mark Priestley #

AR AL

TR E e SN P AU

Practical Cbject-Oriented Design with UML

Second Edition

T [X3 & i it UML LBk

(%6 2 B

LA Ll
B 3

Mark Pries

Mark Priestley
Practical Object-Oriented Design with UML, Second Edition
EISBN: 0-07-710393-9

Copyright © 2004 by The McGraw-Hill Companies, Inc.

Original language published by The McGraw-Hill Companies, Inc. All Rights reserved. No part of this publi-
cation may be reproduced or distributed by any means, or stored in a database or retrieval system, without the
prior written permission of the publisher.

Authorized English language edition jointly published by McGraw-Hill Education (Asia) Co. and Tsinghua
University Press. This edition is authorized for sale only to the educational and training institutions, and within
the territory of the People’s Republic of China (excluding Hong Kong, Macao SAR and Taiwan). Unauthor-
ized export of this edition is a violation of the Copyright Act. Violation of this Law is subject to Civil and
Criminal Penalties,

AREXBOEHBEAFZHUEHAOEEERT FRETHR(EM A AGMEHE. KRANRESE
ARKMESAFOEFEEE RIFNTERRETEEBREOHHERBINBZHE.
RBWT2ZHO AN BREENE FRERZHR.
*ZHBEREBEAT, ABUEAFRE WD EEBHERRD .

EETRABEERSRZILS EF 01-2004-2956

H HEWE McGraw-Hill 2T B iz %, THREETBHE,

EHEERRAR (CIP) &

i % 283 UML 9288 (3B 2 BR) = Practical Object-Oriented Design with UML, Second Edition/ (%) ¥ &
7 4% (Priestley, M.) ¥, —EHIA, — b5 WL A H 4L, 2004.6

(REHENHT B ZEZHMARTD

ISBN 7-302-08784-9

[. & 1. % [. AAMKER, UML-BFRIT-RSER—HH KX N. TP312

oh (& R A B 454 CIP B4 4% ¢ (2004) 86 054012 8

H W & EERFHRE o H EEEEREEH AR
http://www. tup. com.cn [} %R 100084
B Hl. 01062770175 TARRE: 01062776969
WERE: S
BN R & JLREREDRIERA
¥ 1T & —WATHREITAERAA
R 1T H: FERHELEINERITH

F &, 185x230 EP¥K: 23.5

B %2004 456 A% 1AL 2004 4 6 A1 KEIRI
8. [SBN 7-302-08784-9/TP - 6234

B % 1~5000

' 39005

A A AP SO AR (RN LA R B R BT R DS B R I B, 5 WA L R e R
Pk, BERHE. (010)62770175-3103 B(010)62795704,

iR e B

HA L R, A FENEF BHUREAENNEPHEMH. FEH PR
RMAFTHZES. ERARBEREENAL BRBERSPREBRE. BEHT MK
FRRAAANEL . DAZAREEY. BNRERFBTOEM EFRE, N TR
B OB BR , SR R IE AR K O R R R A SR Y I A R RSLERE

HHEKF RN 1996 F£IF 86, SESER BRAFGE BEOHR T “K¥EITEHLH
BAB OB S —RFI5#EAH, ZAENREOREM IR, BA 21 e, R4 H
AREHEHTHHBERREFONE, ECENER L, # -5V KEEAS, WEEBFA
Rt — MR EBEA X E XA EER TREBR AN R R AT ELBE K ESE 8
REZEM ABRABERETEVHBFESIFLZEMN RN BOBO”, UBEE. BOHH
EERMAERAERIIEMHBRIBRARBRARI. EFREALTR HEBRRERKINE
FES T E VL KT B LFIRITIE K% EHLBE B4 E 4 8 R 5 (BB
BREH FEAHRMANTE,

WK E R

% H R

EABRESEAFRAERKFETR TR HERBOEM . M 2001 45 2004 4,74
ERFECH 4 BHREEATHBNE LRENEESESH. B I RAERE, EX &G
FESBEHNTFRER 2PN FE/ITRE. B2 REIHEA MMRALHE, TELMY
MTE S ERHFALR FARERARKBATE | ROESRBRENTFEZRA. K
T 3 7 — AP 5 X I & D s 6 TR, R (S 52 2 Xk A 98 A A A B R e B Y B ik
REHBFRAE - TBONR, TERERNE T BRIEE AN RFRFPEZRBAN L
—(HROFROAR” FEEN G -AB"E - REOTR. XERRNTABKEFEK
MARBRBROLEN. BREBAREROISIREE R E 8 H 8O TER BB LH
WL 4~7 BARIVER T o A E | X RITERBER, 4 R MERARXINRE. &
BBARGEEMERLER . EH TEAER HAANKTEFZBREAR, ETHEH
4 3t 4 48 T) X R 7 B O AS SR

B2 RAERMBEORE L%z, T EREEBFLBRNEER T ERBROESIHET
EHEENRE BN ENESE. A58 LR KRR R RE, REE S
HREEFMFBEHER, B WHEE BRI —F, ZHTRE-EHHEAREAERSE. BED
NEBAKYES. F2RNAREESE | RN EAFE REYAIRFIRHER
BAHNBENRABOEETREENEANT AR T OHHE NEEIR. EHESH
SIAER ERARL, ER BRI AABNEKR TEEAMBIZAL.

215 F R, R, FE R, B A ENE R R BT REF RO,

THE
AL RZEHBYLRHE

PREFACE

Mr Palomar’s rule had gradually altered: now he needed a great variety of
models, perhaps interchangeable, in a combining process, in order to find
the one that would best fit a reality that, for its own part, was always made
of many different realities, in time and in space.

Italo Calvino

This book aims to provide a practical and accessible introduction to object-oriented
design. It assumes that readers have prior knowledge of an object-oriented programming
language, ideally Java, and explains both the principles and application of UML. It is
aimed principally at students in the later years of an undergraduate or Masters course in
Computer Science or Software Engineering, although I hope that other audiences will
find the book useful.

The overall strategy of the book is to emphasize the connections between design
notations and code. There are many excellent books available which discuss systems
analysis and design with UML, but fewer that pay detailed attention to the final product,
the code of the system being developed. UML is at bottom a language for expressing
the designs of object-oriented programs, however, and it seems natural to consider the
notation and meaning of the language from this perspective. I have also, over the years,
found this to be a good way of imparting to students a concrete sense of what the design
notations actually mean. ‘

The book has two main objectives related to this overall philosophy. The first is
to provide a complete example of an object-oriented development using UML, starting
with a statement of requirements and finishing with complete executable code which
can be run, modified and extended.

xii PRACTICAL OBJECT-ORIENTED DESIGN WITH UML

This objective of course places limits on the size of the example that can be
considered. To get round this, the book takes as its paradigm system architecture
a typical stand-alone desktop application, supporting a graphical user interface and
interfacing to a relational database. Within this framework, the text examines the
development of some core functionality, and leaves extensions of the system to be
worked out as exercises.

The second objective is to provide a tutorial introduction to those aspects of UML
that are important in developing this kind of application. Much emphasis is placed on
clearly explaining the constructs and notation of the design language, and demonstrating
the close relationship between the design and the implementation of object-oriented
programs. These issues are treated rather superficially in many books. If they are not
clearly understood, however, it is difficult to make correct use of UML.

UML is a large and complex language, and when one is learning it there is a danger
of being overwhelmed by details of the notation. In order to avoid this, the book uses a
subset of UML that is sufficient to develop desktop applications. The most significant
omissions are any coverage of concurrency, activity diagrams and anything other than
a brief mention of deployment diagrams. These aspects of the language are obviously
important for ‘industrial-strength’ applications of UML, but these lie somewhat outside
the experience of the intended audience of this book.

STRUCTURE OF THE BOOK

Following an introductory chapter, Chapter 2 introduces the basic concepts of object
modelling in the context of a simple programming example. Chapters 3 to 7 contain a
more extended case study of the use of UML, while Chapters 8 to 12 present the most
important UML notations systematically. These two sections are independent of each
other, allowing different reading strategies as shown in Figure P.1. Chapter 13 discusses
strategies for implementing UML designs and Chapter 14 provides a general discussion
of some of the underlying principles of object-oriented design.

introductory
Chapters 1 and 2

T

Case Study UML Tutorial
Chapters 3-7 Chapters 8-12
Other topics
Chapters 13 and 14

Figure P.1 Chapter dependencies

PREFACE xiii

CHANGES IN THE SECOND EDITION

The most significant change in the second edition is that the diagram editor example has
been replaced by a new case study based on a simple booking system for a restaurant.
This provides an application with more ‘real-world’ context than the diagram editor, and
is one which many students find easier to relate to. It also allows concepts of different
architectural layers to be introduced more naturally than before, and these topics are
now covered explicitly in Chapters 4 to 7.

Although the focus of the book is on language rather than process, it is impossible
to divorce the two entirely in any practical approach. In the new Chapter 3, the book now
includes an explicit discussion of some issues in the development of software processes
and provides an outline sketch of the Unified Process.

The remaining chapters are very much the same as in the previous edition, though
minor changes have been made throughout the book, both in content and presentation.
To make room for the new chapter and case study, some material has had to be omitted
from this edition, most noticeably the second case study. All the material that has been
omitted, including the diagram editor example, will be made available from book’s
website.

FURTHER RESOURCES

A web page for the book provides access to the source code for the examples used in
the book, solutions to all exercises and material from the first edition. It can be found at
the following URL.:

http://www.mcgraw-hill.co.uk/textbooks/priestley

An instructor’s manual, including slides, the diagrams used in the book and
additional exercises, is available to bona fide academics who have adopted the book for
classroom use. Information on how to obtain the manual can be found on the publisher’s
website.

ACKNOWLEDGEMENTS

In the preparation of this new edition, my most significant debt is to my students who
have made use of the earlier editions, and also sat through earlier presentations of the
restaurant booking system. I am indebted to Michael Richards for the initial idea for
this case study.

Preface

1

1.1
1.2
1.3
1.4
1.5
1.6
1.7

2

2.1
2.2
23
2.4
25
2.6
2.7
2.8
2.9
2.10
2.11
2.12

Introduction to UML

Models and modelling
Methodologies

The Unified Modeling Language
Design models and code

The software development process
Summary

Exercises

Modelling with Objects

The object model
Classes and objects
Object properties
Avoiding data replication
Links

Associations

Message passing
Polymorphism

Dynamic binding

The applicability of the object model

Summary
Exercises

CONTENTS

xi

14

14
16
19
21
21
24
25
27
32
33
35
36

vi CONTENTS

3

3.1
3.2
33
34
35
3.6
3.7

4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9

5

5.1
5.2
53
54
5.5
5.6
5.7
5.8
5.9
5.10

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10

Software Development Processes

The waterfall model

Alternatives to the waterfall model

The Unified Process

The role of models in development
The use of UML in the Unified Process
Summary

Exercises

Restaurant System: Business Modelling

Informal requirements

Use case modelling

Describing use cases
Structuring the use case model
Completing the use case model
Domain modelling

Glossaries

Summary

Exercises

Restaurant System: Analysis

The purpose of analysis
Object design

Software architecture

Use case realization
Recording new bookings
Cancelling bookings

Updating bookings
Completing the analysis model
Summary

Exercises

Restaurant System: Design

Receiving input from the user
Producing output

Persistent data storage

The design model

Detailed class design

Dynamic modelling of behaviour

A statechart for the booking system
A statechart for reservations
Summary

Exercises

39

39
43
46
47
49
51
52

53

53
55
58
61
65
67
71
71
72

75

75
77
78
82
88
90
92
94
94
96

98

98
101
104
109
109
111
113
117
119
119

7.1
7.2
7.3
7.4
1.5
7.6
7.7
7.8
7.9

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9
8.10
8.11
8.12
8.13
8.14
8.15

9.1
9.2
9.3
9.4
9.5
9.6
9.7
9.8
99
9.10
9.11
9.12

Restaurant System: Implementation

Implementation diagrams
Implementation strategies
Application frameworks

The Java AWT framework
Implementation of classes
Implementation of associations
Implementation of operations
Summary

Exercises

Class and Object Diagrams

Data types

Classes

Describing objects with classes
Associations

Generalization and specialization
Inheritance of attributes and operations
Aggregation

Composition

Association classes

N-ary associations

Qualified associations

Interfaces

Templates

Summary

Exercises

Interaction Diagrams

Collaborations
Classifier roles
Association roles
Interaction diagrams
Object creation
Object destruction
Role multiplicity and iterated messages
Multiobjects
Conditional messages
Messages to self
Summary

Exercises

CONTENTS vii

121

121
124
125
128
130
134
137
139
140

141

142
144
145
150
156
160
164
166
168
171
172
175
176
177
178

187

187
189
190
192
195
196
197
198
200
203
204
205

viii CONTENTS

10

10.1
10.2
10.3
10.4
10.5
10.6
10.7
10.8
109
10.10
10.11
10.12
10.13
10.14
10.15

11

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8

12

12.1
12.2
12.3
124
12.5
12.6
12.7
12.8
12.9
12.10

13

13.1
13.2

Statecharts

State-dependent behaviour
States, events and transitions
Initial and final states

Guard conditions

Actions

Activities

Composite states

History states

Summary of the CD player
Dynamic modelling in practice
Time events

Activity states

Summary of the ticket machine
Summary

Exercises

Component Diagrams

Dependencies

Components and artefacts
Component diagrams

Some common physical relationships
Compilation dependencies
Components and interfaces
Summary

Exercises

Constraints

Standard constraints

The Object Constraint Language
The context of a constraint
Navigation expressions

OCL data types and operations
Constraints

Stereotyped constraints
Constraints and generalization
Summary

Exercises

Implementation Strategies

Implementing associations
Unidirectional implementations

208

209
210
211
212
214
216
218
221
222
223
228
228
229
229
231

235

236
237
239
239
241
245
246
246

249
250
251
253
256
260
263
266
267
268

270

271
272

133
134
13.5
13.6
13.7
13.8
13.9
13.10

14

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8
14.9
14.10
14.11
14.12

Bidirectional implementations
Implementing qualified associations
Implementing association classes
Implementing constraints
Implementing statecharts

Reverse engineering

Summary

Exercises

Principles and Patterns

The open-—closed principle

No concrete superclasses

Decouple the interface hierarchy
The Liskov substitution principle
Interactions determine structure
Design patterns

Recursive structures

The State and Strategy patterns
MVC, document/view and Observer
Applying visitor to the stock control program
Summary

Exercises

Appendix A UML Notation Summary

Al
A2
A3
A4
AS
A6
Al
A8
A9
A.10
A.ll
A.12

General concepts
Model structure

Use case diagrams
Object diagrams
Collaborations
Messages
Collaboration diagrams
Sequence diagrams
Class diagrams
Statechart diagrams
Component diagrams
Templates

CONTENTS

Appendix B Summary of the Object Constraint Language (OCL)

B.1
B.2
B.3

Constraints
Expressions
Basic types

ix

275
282
283
285
286
289
293
294

298

299
303
305
307
308
310
312
316
317
320
324
324

326

326
329
330
330
331
332
333
333
335
338
339
340

341

341
341
342

x CONTENTS

B.4 Model Types
B.5 Collections

Appendix C A Template for use case descriptions
References and Bibliography

Index

344
344

348

350

353

1

INTRODUCTION TO UML

According to its designers, UML, the Unified Modeling Language, is ‘a general-purpose
visual modeling language that is used to specify, visualize, construct and document the
architecture of a software system’. This chapter explains how models are used in the
software development process, and the role of a language such as UML. The high-level
structure of UML is described, together with an informal account of its semantics and
the relationship between design notations and code.

1.1 MODELS AND MODELLING

The use of models in the development of software is extremely widespread. This section
explains two characteristic uses of models, to describe real-world applications and also
the software systems that implement them, and then discusses the relationships between
these two types of model.

Models of software

Software is often developed in the following manner. Once it has been determined that
a new system is to be built, an informal description is written stating what the software
should do. This description, sometimes known as a requirements specification, is often
prepared in consultation with the future users of the system, and can serve as the basis
for a formal contract between the user and the supplier of the software.

The completed requirements specification is then passed to the programmer or
project team responsible for writing the software; they go away and in relative isolation
produce a program based on the specification. With luck, the resulting program will be
produced on time, within budget, and will satisfy the needs of the people for whom the
original proposal was produced, but in many cases, sadly, this does not happen.

2 PRACTICAL OBJECT-ORIENTED DESIGN WITH UML

The failure of many software projects has led people to study the way in which
software is developed, in an attempt to understand why projects fail. As a result, many
suggestions have been made about how to improve the software development process.
These often take the form of process models describing a number of activities involved
in development and the order in which they should be carried out.

Process models can be depicted graphically. For example, Figure 1.1 shows a very
simple process, where code is written directly from the system requirements with no
intervening steps. As well as showing the processes involved, as rectangles with rounded
corners, this diagram shows the artefacts produced at each stage in the process. When
two stages in a process are carried out in sequence, the output of one stage is often used
as the input to the next, as indicated by the dashed arrows.

Analyse
Requirements Write Code

11

Requirements Source
Specification Code

Figure 1.1 A primitive model of software development

The requirements specification produced at the start of a development can take
many forms. A written specification may be either a very informal outline of the
required system or a highly detailed and structured functional description. In small
developments the initial system description may not even be written down, but only
exist as the programmer’s informal understanding of what is required. In yet other cases
a prototype system may have been developed in conjunction with the future users, and
this could then form the basis of subsequent development work. In the discussion above
all these possibilities are included in the general term ‘requirements specification’, but
this should not be taken to imply that only a written document can serve as a starting
point for subsequent development.

It should also be noted that Figure 1.1 does not depict the whole of the software life
cycle. In this book, the term ‘software development’ is used in rather a narrow sense,
to cover only the design and implementation of a software system, and many other
important components of the life cycle are ignored. A complete project plan would also
cater for crucial activities such as project management, requirements analysis, quality
assurance and maintenance.

When a small and simple program is being written by a single programmer,
there is little need to structure the development process any more than in Figure 1.1.
Experienced programmers can keep the data and subroutine structures of such a
program clear in their minds while writing it, and if the behaviour of the program is not
what is expected they can make any necessary changes directly to the code. In certain
situations this is an entirely appropriate way of working.

INTRODUCTION TO UML 3

With larger programs, however, and particularly if more than one person is involved
in the development, it is usually necessary to introduce more structure into the process.
Software development is no longer treated as a single unstructured activity, but is instead
broken up into a number of subtasks, each of which usually involves the production of
some intermediate piece of documentation.

Figure 1.2 illustrates a software development process which is slightly more
complex than the one shown in Figure 1.1. In this case, the programmer is no longer
writing code based on the requirements specification alone, but first of all produces
a structure chart showing how the overall functionality of the program is split into a
number of modules, or subroutines, and illustrating the calling relationship between

these subroutines.
Design Module
Structure

Analyse
Requirements

N= [-7
Requirements Structure Source
Specification Chart Code

Figure 1.2 A more complex software development process

This process model shows that the structure chart is based on the information
contained in the requirements specification, and that both the specification and the
structure chart are used when writing the final code. The programmer might use the
structure chart to clarify the overall architecture of the program, and refer to the
specification when coding individual subroutines to check up on specific details of the
required functionality.

The intermediate descriptions or documents that are produced in the course of
developing a piece of software are known as models. The structure chart mentioned
in Figure 1.2 is an example of a model in this sense. A model gives an abstract view of a
system, highlighting certain important aspects of its design, such as the subroutines and
their relationships, and ignoring large amounts of low-level detail, such as the coding
of each routine. As a result, models are much easier to understand than the complete
code of the system and are often used to illustrate aspects of a system’s overall structure
or architecture. An example of the kind of structure that is meant is provided by the
relationships between subroutines documented in the structure chart above.

As larger and more complex systems are developed and as the number of people
involved in the development team increases, more formality needs to be introduced into
the process. One aspect of this increased complexity is that a wider range of models
is used in the course of a development. Indeed, software design has sometimes been
defined as the construction of a series of models describing important aspects of the
system in more and more detail, until sufficient understanding of the requirements is
gained to enable coding to begin.

