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PREFACE

Mr Palomar’s rule had gradually altered: now he needed a great variety of
models, perhaps interchangeable, in a combining process, in order to find
the one that would best fit a reality that, for its own part, was always made
of many different realities, in time and in space.

Italo Calvino

This book aims to provide a practical and accessible introduction to object-oriented
design. It assumes that readers have prior knowledge of an object-oriented programming
language, ideally Java, and explains both the principles and application of UML. It is
aimed principally at students in the later years of an undergraduate or Masters course in
Computer Science or Software Engineering, although I hope that other audiences will
find the book useful.

The overall strategy of the book is to emphasize the connections between design
notations and code. There are many excellent books available which discuss systems
analysis and design with UML, but fewer that pay detailed attention to the final product,
the code of the system being developed. UML is at bottom a language for expressing
the designs of object-oriented programs, however, and it seems natural to consider the
notation and meaning of the language from this perspective. I have also, over the years,
found this to be a good way of imparting to students a concrete sense of what the design
notations actually mean. ‘

The book has two main objectives related to this overall philosophy. The first is
to provide a complete example of an object-oriented development using UML, starting
with a statement of requirements and finishing with complete executable code which
can be run, modified and extended.



xii PRACTICAL OBJECT-ORIENTED DESIGN WITH UML

This objective of course places limits on the size of the example that can be
considered. To get round this, the book takes as its paradigm system architecture
a typical stand-alone desktop application, supporting a graphical user interface and
interfacing to a relational database. Within this framework, the text examines the
development of some core functionality, and leaves extensions of the system to be
worked out as exercises.

The second objective is to provide a tutorial introduction to those aspects of UML
that are important in developing this kind of application. Much emphasis is placed on
clearly explaining the constructs and notation of the design language, and demonstrating
the close relationship between the design and the implementation of object-oriented
programs. These issues are treated rather superficially in many books. If they are not
clearly understood, however, it is difficult to make correct use of UML.

UML is a large and complex language, and when one is learning it there is a danger
of being overwhelmed by details of the notation. In order to avoid this, the book uses a
subset of UML that is sufficient to develop desktop applications. The most significant
omissions are any coverage of concurrency, activity diagrams and anything other than
a brief mention of deployment diagrams. These aspects of the language are obviously
important for ‘industrial-strength’ applications of UML, but these lie somewhat outside
the experience of the intended audience of this book.

STRUCTURE OF THE BOOK

Following an introductory chapter, Chapter 2 introduces the basic concepts of object
modelling in the context of a simple programming example. Chapters 3 to 7 contain a
more extended case study of the use of UML, while Chapters 8 to 12 present the most
important UML notations systematically. These two sections are independent of each
other, allowing different reading strategies as shown in Figure P.1. Chapter 13 discusses
strategies for implementing UML designs and Chapter 14 provides a general discussion
of some of the underlying principles of object-oriented design.

introductory
Chapters 1 and 2

T

Case Study UML Tutorial
Chapters 3-7 Chapters 8-12
Other topics
Chapters 13 and 14

Figure P.1 Chapter dependencies



PREFACE xiii

CHANGES IN THE SECOND EDITION

The most significant change in the second edition is that the diagram editor example has
been replaced by a new case study based on a simple booking system for a restaurant.
This provides an application with more ‘real-world’ context than the diagram editor, and
is one which many students find easier to relate to. It also allows concepts of different
architectural layers to be introduced more naturally than before, and these topics are
now covered explicitly in Chapters 4 to 7.

Although the focus of the book is on language rather than process, it is impossible
to divorce the two entirely in any practical approach. In the new Chapter 3, the book now
includes an explicit discussion of some issues in the development of software processes
and provides an outline sketch of the Unified Process.

The remaining chapters are very much the same as in the previous edition, though
minor changes have been made throughout the book, both in content and presentation.
To make room for the new chapter and case study, some material has had to be omitted
from this edition, most noticeably the second case study. All the material that has been
omitted, including the diagram editor example, will be made available from book’s
website.

FURTHER RESOURCES

A web page for the book provides access to the source code for the examples used in
the book, solutions to all exercises and material from the first edition. It can be found at
the following URL.:

http://www.mcgraw-hill.co.uk/textbooks/priestley

An instructor’s manual, including slides, the diagrams used in the book and
additional exercises, is available to bona fide academics who have adopted the book for
classroom use. Information on how to obtain the manual can be found on the publisher’s
website.

ACKNOWLEDGEMENTS

In the preparation of this new edition, my most significant debt is to my students who
have made use of the earlier editions, and also sat through earlier presentations of the
restaurant booking system. I am indebted to Michael Richards for the initial idea for
this case study.
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1

INTRODUCTION TO UML

According to its designers, UML, the Unified Modeling Language, is ‘a general-purpose
visual modeling language that is used to specify, visualize, construct and document the
architecture of a software system’. This chapter explains how models are used in the
software development process, and the role of a language such as UML. The high-level
structure of UML is described, together with an informal account of its semantics and
the relationship between design notations and code.

1.1 MODELS AND MODELLING

The use of models in the development of software is extremely widespread. This section
explains two characteristic uses of models, to describe real-world applications and also
the software systems that implement them, and then discusses the relationships between
these two types of model.

Models of software

Software is often developed in the following manner. Once it has been determined that
a new system is to be built, an informal description is written stating what the software
should do. This description, sometimes known as a requirements specification, is often
prepared in consultation with the future users of the system, and can serve as the basis
for a formal contract between the user and the supplier of the software.

The completed requirements specification is then passed to the programmer or
project team responsible for writing the software; they go away and in relative isolation
produce a program based on the specification. With luck, the resulting program will be
produced on time, within budget, and will satisfy the needs of the people for whom the
original proposal was produced, but in many cases, sadly, this does not happen.
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The failure of many software projects has led people to study the way in which
software is developed, in an attempt to understand why projects fail. As a result, many
suggestions have been made about how to improve the software development process.
These often take the form of process models describing a number of activities involved
in development and the order in which they should be carried out.

Process models can be depicted graphically. For example, Figure 1.1 shows a very
simple process, where code is written directly from the system requirements with no
intervening steps. As well as showing the processes involved, as rectangles with rounded
corners, this diagram shows the artefacts produced at each stage in the process. When
two stages in a process are carried out in sequence, the output of one stage is often used
as the input to the next, as indicated by the dashed arrows.

Analyse
Requirements Write Code

11

Requirements Source
Specification Code

Figure 1.1 A primitive model of software development

The requirements specification produced at the start of a development can take
many forms. A written specification may be either a very informal outline of the
required system or a highly detailed and structured functional description. In small
developments the initial system description may not even be written down, but only
exist as the programmer’s informal understanding of what is required. In yet other cases
a prototype system may have been developed in conjunction with the future users, and
this could then form the basis of subsequent development work. In the discussion above
all these possibilities are included in the general term ‘requirements specification’, but
this should not be taken to imply that only a written document can serve as a starting
point for subsequent development.

It should also be noted that Figure 1.1 does not depict the whole of the software life
cycle. In this book, the term ‘software development’ is used in rather a narrow sense,
to cover only the design and implementation of a software system, and many other
important components of the life cycle are ignored. A complete project plan would also
cater for crucial activities such as project management, requirements analysis, quality
assurance and maintenance.

When a small and simple program is being written by a single programmer,
there is little need to structure the development process any more than in Figure 1.1.
Experienced programmers can keep the data and subroutine structures of such a
program clear in their minds while writing it, and if the behaviour of the program is not
what is expected they can make any necessary changes directly to the code. In certain
situations this is an entirely appropriate way of working.
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With larger programs, however, and particularly if more than one person is involved
in the development, it is usually necessary to introduce more structure into the process.
Software development is no longer treated as a single unstructured activity, but is instead
broken up into a number of subtasks, each of which usually involves the production of
some intermediate piece of documentation.

Figure 1.2 illustrates a software development process which is slightly more
complex than the one shown in Figure 1.1. In this case, the programmer is no longer
writing code based on the requirements specification alone, but first of all produces
a structure chart showing how the overall functionality of the program is split into a
number of modules, or subroutines, and illustrating the calling relationship between

these subroutines.
Design Module
Structure

Analyse
Requirements

N= [ -7
Requirements Structure Source
Specification Chart Code

Figure 1.2 A more complex software development process

This process model shows that the structure chart is based on the information
contained in the requirements specification, and that both the specification and the
structure chart are used when writing the final code. The programmer might use the
structure chart to clarify the overall architecture of the program, and refer to the
specification when coding individual subroutines to check up on specific details of the
required functionality.

The intermediate descriptions or documents that are produced in the course of
developing a piece of software are known as models. The structure chart mentioned
in Figure 1.2 is an example of a model in this sense. A model gives an abstract view of a
system, highlighting certain important aspects of its design, such as the subroutines and
their relationships, and ignoring large amounts of low-level detail, such as the coding
of each routine. As a result, models are much easier to understand than the complete
code of the system and are often used to illustrate aspects of a system’s overall structure
or architecture. An example of the kind of structure that is meant is provided by the
relationships between subroutines documented in the structure chart above.

As larger and more complex systems are developed and as the number of people
involved in the development team increases, more formality needs to be introduced into
the process. One aspect of this increased complexity is that a wider range of models
is used in the course of a development. Indeed, software design has sometimes been
defined as the construction of a series of models describing important aspects of the
system in more and more detail, until sufficient understanding of the requirements is
gained to enable coding to begin.



