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Preface

This book grew out of a set of notes for a series of lectures I orginally gave at
the Center for Communications Research and then at Princeton University. The
motivation was to try to understand the basic facts about algebraic curves without
the modern prerequisite machinery of algebraic geometry. Of course, one might
well ask if this is a good thing to do. There is no clear answer to this question. In
short, we are trading off easier access to the facts against a loss of generality and
an impaired understanding of some fundamental ideas. Whether or not this is a
useful tradeoff is something you will have to decide for yourself,

One of my objectives was to make the exposition as self-contained as possible.
Given the choice between a reference and a proof, I usually chose the latter. Al-
though I worked out many of these arguments myself, I think I can confidently
predict that few, if any, of them are novel. I also made an effort to cover some
topics that seem to have been somewhat neglected in the expository literature.
Among these are Tate’s theory of residues, higher derivatives and Weierstrass
points in characteristic p, and inseparable residue ficld extensions. For the treat-
ment of Weierstrass points, as well as a key argument in the proof of the Riemann
Hypothesis for finite fields, I followed the fundamental paper by Stéhr-Voloch
{19]. In addition to this important source, I often relied on the excellent book by
Stichtenoth [17].

It is a pleasure to acknowledge the excellent mathematical environment pro-
vided by the Center for Communications Research in which this book was written.
In particular, I would like to thank my colleagues Toni Bluher, Brad Brock, Ev-
erett Howe, Bruce Jordan, Allan Keeton, David Lieberman, Victor Miller, David
Zelinsky, and Mike Zieve for lots of encouragement, many helpful discussions,
and many useful pointers to the literature.



Introduction

What Is a Projective Curve?

Classically, a projective curve is just the set of all solutions to an irreducible
homogeneous polynomial equation f(X;,X;,X;) = 0 in three variables over the
complex numbers, modulo the equivalence relation given by scalar multiplication.
It is very safe to say, however, that this answer is deceptively simple, and in fact
lies at the tip of an enormous mathematical iceberg.

The size of the iceberg is due to the fact that the subject lies at the intersection
of three major fields of mathematics: algebra, analysis, and geometry. The origins
of the theory of curves lie in the nineteenth century work on complex function
theory by Riemann, Abel, and Jacobi. Indeed, in some sense the theory of pro-
jective curves over the complex numbers is equivalent to the theory of compact
Riemann surfaces, and one could learn a fair amount about Riemann surfaces by
specializing results in this book, which are by and large valid over an arbitrary
ground field £, to the case k = C. To do so, however, would be a big mistake
for two reasons. First, some of our results, which are obtained with considerable
difficulty over a general field, are much more transparent and intuitive in the com-
plex case. Second, the topological structure of complex curves and their beautiful
relationship to complex function theory are very important parts of the subject
that do not seem to generalize to arbitrary ground fields. The complex case in fact
deserves a book all to itself, and indeed there are many such, e.g. [15].

The generalization to arbitrary gound fields is a twentieth century development,
pioneered by the German school of Hasse, Schmidt, and Deuring in the 1920s and
1930s. A significant impetus for this work was provided by the development of
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algebraic number theory in the early part of the century, for it turns out that there
is a very closc analogy between algebraic function fields and algebraic number
fields.

The results of the German school set the stage for the development of algebraic
geometry over arbitrary fields, but were in large part limited to the special case
of curves. Even in that case, there were serious difficulties. For example, Hasse
was able to prove the Riemann hypothesis only for elliptic curves. The proof for
curves of higher genus came from Weil and motivated his breakthrough work on
abstract varieties. This in turn led to the *great leap forward” by the French school
of Serre, Grothendiek, Deligne, and others to the theory of schemes in the 1950s
and 1960s.

The flowering of algebraic geometry in the second half of the century has, to a
large extent, subsumed the theory of algebraic curves. This development has been
something of a two-edged sword, however. On the one hand, many of the results
on curves can be seen as special cases of more general facts about schemes. This
provides the usual benefits of a unified and in some cases a simplified treatment,
together with some further insight into what is going on. In addition, there are
some important facts about curves that, at least with the present state of knowl-
edge, can only be understood with the more powerful tools of algebraic geometry.
For example, there are important properties of the Jacobian of a curve that arise
from its structure as an algebraic group.

On the other hand, the full-blown treatment requires the student to first master
the considerable machinery of sheaves, schemes, and cohomology, with the result
that the subject becomes less accessible to the nonspecialist. Indeed, the older
algebraic development of Hasse et al. has seen something of a revival in recent
years, due in part to the emergence of some applications in other fields of math-
ematics such as cryptology and coding theory. This approach, which is the one
followed in this book, treats the function field of the curve as the basic object of
study.

In fact, one can go a long way by restricting attention entirely to the func-
tion field (see, e.g., [17]), because the theory of function fields tumns out to be
equivalent to the theory of nonsingular projective curves. However, this is rather
restrictive because many important examples of projective curves have singular-
ities. A feature of this book is that we go beyond the nonsingular case and study
projective curves in general, in effect viewing them as images of nonsingular
curves.

What Is an Algebraic Function?

For our purposes, an algebraic function field X is a field that has transcendence de-
gree one over some base field k, and is also finitely generated over k. Equivalently,
K is a finite extension of k(x) for some transcendental element x € X. Examples of
~ such fields abound. They can be constructed via elementary field theory by sim-



Introduction Xiit

ply adjoining to A(x) roots of irreducible polynomials with coefficients in £(x). In
addition, however, we will always assume that k is the full field of constants of K,
that is, that every element of X that is algebraic over £ is already in £.

When k is algebraically closed, there is another more geometric way to con-
struct such fields, which is more closely related to the subject of this book. Let
IP? be the set of lines through the origin in complex 3-space, and let ¥ C P? be a
projective curve as described above. That is, V is the set of zeros of a complex, ir-
reducible, homogenous polynomial f(X;,X;,X,) modulo scalar equivalence. We
observe that a quotient of two homogeneous polynomials of the same degree de-
fines a complex-valued function at all points of P2 where the denominator does
not vanish. If the denominator does not vanish identically on V, it turns out that
restricting this function to V' defines a complex-valued function at all but a fi-
nite number of points of V. The set of all such functions defines a subfield C(V),
which is called the function field of V.

Of course, there is nothing magical about the complex numbers in this discus-
sion — any algebraically closed field £ will do just as well. In fact, every finitely
generated extension X of an algebraically closed field k of transcendence degree
one arises in this way as the function field of a projective nonsingular curve V
defined over k which, with suitable definitions, is unique up to isomorphism. This
explains why we call such fields “function fields”, at least in the case when k is
algebraically closed.

What Is in This Book?

Here is a brief outline of the book, with only sketchy definitions and of course no
proofs.

It turns out that for almost all points P of an algebraic curve V, the order of
vanishing of a function at P defines a discrete k-valuation v, on the function field
K of V. The valuation ring Op defined by v, has a unique maximal ideal /p,
which, because v, is discrete, is a principal ideal. A generator for /, is called a
local parameter at P. 1t is convenient to identify [, with P. Indeed, for the first
three chapters of the book, we forget all about the curve ¥ and its points and focus
attention instead on the set P, of k-valuation ideals of X, which we call the set of
prime divisors of K. A basic fact about function fields is that all k-valuations are
discrete.

A divisor on the function field X is an element of the free abelian group Div(K)
generated by the prime divisors. There is 2 map deg : Div(KX) — Z defined by
deg(P) = |Op /P : k| for every prime divisor P. For x € K, it is fundamental that
the divisor

[} =Y vp(x)P
F

has degree zero, and of course that the sum is finite. In other words, every function
has the same (finite) number of poles and zeros, counting multiplicities. Divisors
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of the form [x] for some x € X are called principal divisors and form a subgroup
of Div(K).

A basic problem in the subject is to construct a function with a given set of
poles and zeros. Towards this end, we denote by < the obvious partial order on
Div(K), and we define for any divisor D,

L(D):={xeK|[x] > -D}.

So for example if § is a set of distinct prime divisors and D is its sum, L(D) is the
set of all functions whose poles lie in the set S and are simple.

It is elementary that L(D) is a k-subspace of dimension at most deg(D) + 1.
The fundamental theorem of Riemann asserts the existence of an integer g, such
that for all divisors D of sufficiently large degree, we have

®) dim, (L(D)) = deg(D) —g¢ + 1.

The integer g, is the genus of K. In the complex case, this number has a
topological interpretation as the number of holes in the corresponding Riemann
surface. A refinement of Riemann’s theorem due to Roch identifies the error term
in (x) for divisors of small degree and shows that the formula holds for all divisors
of degree at least 2g — 1.

Our proof of the Riemann—Roch theorem is due to Weil [23], and involves
the expansion of a function in a formal Laurent series at each prime divisor. In
the complex case, these series have a positive radius of convergence and can be
integrated. In the general case, there is no notion of convergence or integration.
It is an amazing fact, nevertheless, that a satisfactory theory of differential forms
exists in general. Although they are not functions, differential forms have poles
and zeros and therefore divisors, which are called canonical divisors. Not only
that, they have residues that sum to zero, just as in the complex case. Our treatment
of the residue theorem follows Tate [20].

There are also higher derivatives, called Hasse derivatives, which present some
technical difficulties in positive characteristic due to potential division by zero.
This topic seems to have been somewhat neglected in the literature on function
fields. Our approach is based on Hensel’s lemma. Using the Hasse derivatives, we
prove the analogue of Taylor’s theorem for formal power series expansion of a
function in powers of a local parameter. This material is essential later on when
we study Weierstrass points of projective maps.

Thus far, the only assumption required on the ground field & is that it be the
full field of constants of K. If k is perfect (e.g. of characteristic zero, finite, or
algebraically closed), this assumption suffices for the remainder of the book. For
imperfect ground fields, however, technical difficulties can arise at this point, and
we must strengthen our assumptions to ensure that ¥’ ®, K remains a field for
every finite extension &' /. Then the space Q, of differential forms on X has the
structure of a (one-dimensional!) K-vector space, which means that all canonical
divisars are congruent modulo principal divisors, and thus have the same degree
(which turns out to be 2g — 2).
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Given a finite, separable extension X' of X, there is a natural map
K, ® K QK — Q K’ 9

which is actually an isomorphism. This allows us to compare the divisor of
a differential form on K with the divisor of its image in K’, and leads to the
Riemann—Hurwitz formula for the genus:

I
K" : K|

Here, the divisor 2;, /K is the different, an important invariant of the extension,

and k' is the relative algebraic closure of k in X'. The different, a familiar object
in algebraic number fields, plays a similar key role in function fields. The formula
has many applications, e.g., in the hyperelliptic case, where we have X = k(x) and
K': K| =

At this point, further technical difficulties can arise for general ground fields of
finite characteristic, and to ensure, for example, that 2, Kk 2 > 0, we must make
the additional technical assumption that all prime divisors are nonsingular. For-
tunately, it turns out that this condition is always satisfied in some finite (purely
inseparable!) scalar extension of X.

When £ is not algebraically closed, the question of whether X has any prime
divisors of degree one (which we call points) is interesting. There is a beautiful
answer for k finite of order g, first proved for genus one by Hasse and in general
by Weil. Let a;(n) denote the number of nonnegative divisors of X of degree n,
and put

4m=g%mn

Note that a,(1) is the number of points of K. Following Stir-Voloch [19] and
Bombieri [2], we prove that

1 22
Zy(t) = T=Hi=a) IIJ(I - o),

where || = ,/g. This leads directly to the so-called “Weil bound” for the number
of points of X:

lag(1)—q—1]| < 2g./q.

Turning our attention now to projective curves, we assume that the ground field
k is algebraically closed, and we define a closed subset of projective space to be
the set of all zeros of a (finite) set of homogeneous polynomials. A projective va-
riety is an irreducible closed set (i.e., not the union of two proper closed subsets),
and a projective curve is a projective variety whose field of rational functions has
transcendence degree one.
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Given a projective curve ¥ C P", we obtain its function field K by restricting
rational functions on P* to V. To recover ¥ from KX, let X;, ..., X, be the coordi-
nates of P" with notation chosen so that X;, does not vanish on V. Then the rational
functions ¢, := X,/X,, (i =1,...,n) are defined on V. Given a point P of K, we
let e, = —min,{vp(¢,)} and put

O(P) = (129, (P) . t°P¢,(P) : - .- . t°2¢,(P)) € P",

where ¢ is a local parameter at P, It is not hard to see that the image of ¢ is V.
In fact, any finite dimensional k-subspace L C K defines a map ¢, to projective
space in this way whose image is a projective curve.

The map ¢ is always surjective. But when is it injective? This question leads
us to the notion of singularities. Let ¢(P) = a € P", and let &, be the subring of
K consisting of all fractions f/g where f and g are homogeneous polynomials of
the same degree and g(a) # 0. We say that ¢ is nonsingular at P if 0, = 0p. This
is equivalent to the familiar condition that the matrix of partial derivatives of the
coordinate functions be of maximal rank.

An everywhere nonsingular projective map is called a projective embedding. It
turns out that ¢L( D) is an embedding for any divisor D of degree at least 2g + 1.
Another interesting case is the canonical map ¢L( D) where D is a canonical divisor.
The canonical map is an embedding unless X is hyperelliptic.

The study of singularities is particularly relevant for plane curves. We prove
that a nonsingular plane curve of degree 4 has genus (d — 1)(d — 2)/2, so there
are many function fields for which every map to P is singular, ¢.g. any function
field of genus 2. In fact, for a plane curve of degree d and genus g, we obtain the
formula

i

where for each singularity Q, 6(Q) is a positive integer determined by the local
behavior of V at Q.

All of the facts discussed above, and many more besides, are proved in this
book. We have tried hard to make the treatment as self-contained as possible. To
this end, we have also included an appendix on elementary field theory.

Finally, there is a website for the book located at http://www functionfields.org.
There you will find the latest errata, a discussion forum, and perhaps answers to
some selected exercises.



Contents

Preface . . . . . . e e e e e e e e e e e e
Introduction . . . . . . . . . . e e e
1 Background
1.1 Valuations . . . . . . . . . e e
12 Completions . . .. ... ....... ... ...
13 DifferentialForms . . . .. ... . ... ... .. .. ... .
14 Residues . . . . . . . .. ...
1.5 EXerCiSes . . . . v v v v i e e e e e e e e
2 Function Fields
2.1 DivisorsandAdeles . . ... ... ... ...........
22 WeilDifferentials . . . ... .................
23 EllipticFunctions .. .....................
2.4 Geometric FunctionFields . ... ..............
2.5 ResiduesandDuality .. ...................
26 EXErCISeS . . . . v v i e e e e e e e
3 Finite Extensions
30 NormandConorm . . . . . . . .« . v v v v vt vt
32 ScalarExtensions . ... .. ... ... ...
33 TheDifferent. . .. ... ... ... .. ... ..
34 SingularPrimeDivisors . . . ... .. ... .. ... ... .
3.5 GaloisExtensions . . .. . .. ... ..
3.6 HyperellipticFunctions . . ..................

vii
xi

16
24
30
37

40
40
47
52
54
58
64

68
69
72
75
82
89
93



X Contents

37 EXercises . . . . . . . . i i it e e

4 Projective Curves

4.1 Projective Varieties . .. ...................
42 MapstoP" . . ... ... ... ..
43 ProjectiveEmbeddings . ...................
44 WeierstrassPoints . . . .. ... ...............
45 PlaneCurves . . . . ... ...... .. ... .. ...
46  Exercises. . . ... ........... .. ... ...,

5§ Zeta Functions

51 TheEulerProduct . .. ....................
5.2 TheFunctional Equation. . . .. ...............
53 TheRiemannHypothesis . ... ...............
54  Exercises . . ... .......... .. ... ...

A Elementary Field Theory
References

Index

103
103
108
114
122
136
147

150
151
154
156
161

164
175

177



1
Background ‘

This chapter contains some preliminary definitions and results needed in the se-
quel. Many of these results are quite elementary and well known, but in the
self-contained spirit of the book, we have provided proofs rather than references.
In this book the word “ring” means “commutative ring with identity,” unless
otherwise explicitly stated.

1.1 Valuations

Let K be a field. We say that an integral domain & C K is a valuation ring of K if
0 # K and for every x € K, either x or x~! lies in &. In particular, X is the field
of fractions of &. Thus, we call an integral domain & a valuation ring if it is a
valuation ring of its field of fractions.

Given a valuation ring & of X, let V = K* /0™ where for any ring R, R* de-
notes the group of units of R. The valuation afforded by & is the natural map
v : K> — V. Although it seems natural to write V multiplicatively, we will fol-
low convention and write it additively. We call V the group of values of &. By
convention, we extend Vv to all of X by defining v(0) = oo,

For elements a6 b0 of V, define a6 < b0 ifa~'b € @, and put v < o
for all v € V. Then it is easy to check that the relation < is well defined, converts
V to a totally ordered group, and that

(1.1.1) v(a+b) > min{v(a),v(b)}
foralla,b € K*,
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Let P:= {x € €| v(x) > 0}. Then P is the set of nonunits of &. From (1.1.1),
it follows that P is an ideal, and hence the unique maximal ideal of & If v(a) >
v(b), then ab~! € P, whence v(1 +ab~!) = 0 and therefore v(a+ b) = v(b). To
summarize:

Lemma 1.1.2. If 0 is a valuation ring with valuation v, then 0 has a unique
maximal ideal P = {x € € | v(x) > 0} and (1.1.1) is an equality unless, perhaps,
v(a) = v(b). 0

Given a valuation ring & of a field X, the natural map K* — K> /£ defines a
valuation. Conversely, given a nontrivial homomorphism v from K* into a totally
ordered additive group G satisifying v(a + b) > min{v(a), v(b)}, we put &, :=
{x € K* | v(x) > 0} U {0}. Then it is easy to check that &, is a valuation ring
of K and that v induces an order-preserving isomorphism from K* /6™ onto its
image. Normally, we will identify these two groups. Note, however, that some
care needs to be taken here. If, for example, we replace v by nv : K* — G for any
positive integer n, we get the same valuation of X.

We let P, := {x € K| v(x) > 0} be the maximal ideal of &, and F, := 0, /P,
be the residue field of v. If K contains a subfield k, we say that v is a k-valuation
of K if v(x) = 0 for all x € k*. In this case, F, is an extension of k. Indeed, in the ,
case of interest to us, this extension turns out to be finite. However, there is some
subtlety here because the residue fields do not come equipped with any particular
fixed embedding into some algebraic closure of k, except in the (important) special
case F, =k.

Our first main result on valuations is the extension theorem, but first we need a
few preliminaries.

Lemma 1.1.3. Let R be a subring of a ring S and let x € S. Then the following
conditions are equivalent:

1. x satisfies a monic polynomial with coefficients in R,
2. R[x] is a finitely generated R-module,
3. x lies in a subring that is a finitely generated R-submodule.

Proof. The implications (1) => (2) = (3) are clear. To prove (3) = (1), let
{x;1...,%n} be a set of R-module generators for a subring S, containing x, then
there are elements a;; € R such that

n

Multiplying the matrix (;;x - a;;) by its transposed matrix of cofactors, we obtain
f(x)x; =0 forall j,

where f(X) is the monic polynomial det(5,,X —a;;) and §;; is the Kronecker
symbol. We conclude that f(x)S, =0, and smce le So, that fj (x)=0. O
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Given rings R C S and x € S, we say that x is integral over R if any of the above
conditions is satisfied. We say that § is integral over R if every element of § is
integral over R. If R[x] and R[y] are finitely generated R-modules with generators
{x;} and {y,} respectively, it is easy to see that R[x,y] is generated by {x;y;}. Then
using (l.l.:i) it is straightforward that the sum and product of integral elements
is again integral, so the set R of all elements of S integral over R is a subring.
Furthermore, if x € S satisfies

n-1

i=0
with a; € R, then x is integral over Ry :=R[ay, .. .,a,_;], which is a finitely gener-
ated R-module by induction on n. If {b|,...,bn} is a set of R-module generators
for Ry, then {byx/ | 1 <i<m, 0< j < n} generates R;{x] as an R-module, and we
have proved

Corollary 1.1.4. The set of all elements of S integral over R forms a subring R
and any element of S integral over R is already in R. O

The ring R is called the integral closure of R in S. If R = R, we say that R is
integrally closed in S. If § is otherwise unspecified, we take it to be the field of
fractions of R.

Recall that a ring R is called a local ring if it has an ideal M such that every
element of R\ M is a unit. Then M is evidently the unique maximal ideal of R,
and conversely, a ring with a unique maximal ideal is local. If R is any integral
domain with a prime ideal P, the localization Ry of R at P is the (local) subring
of the field of fractions consisting of all x/y withy & P.

Lemma 1.1.5 (Nakayama’s Lemma). Let R be a local ring with maximal ideal
P and let M be a nonzero finitely generated R-module. Then PM G M.

Proof. LetM = Rm, +-- -+ Rmy, where n is minimal, and put M, := Rm, +-- -+
Rmy,. Then M, is a proper submodule. If M = PM, we can write

n
my =2 am
i=1

with a; € P, but 1 — g, is a unit since R is a local ring, and we obtain the
contradiction

n
i=2

O

Theorem 1.1.6 (Valuation Extension Theorem). Let R be a subring of a field K
and let P be a nonzero prime ideal of R. Then there exists a valuation ring 0 of K
with maximal ideal M suchthat RC O CKand MNR=P.



