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Preface

A one term’s course on information theory has a number of
advantages. It makes relatively few demands on the previous
knowledge of the student and so can be placed anywhere con-
venient in the curriculum. Touching on the structure of language
and having applications to computing it is suitable for students
with a wide variety of interests. Important theorems can be
reached without great effort and yet the techniques are suffi-
ciently testing to stretch the student. The course can be followed,
if desired, by more sophisticated units dealing with algebraic
coding theory, cryptography, linguistics, error analysis, and opti-
cal communication, to choose a few examples.

The course presented in this book is largely self-contained.
After a discussion of definitions there is a treatment of elemen-
tary coding theory including optimal binary codes. Another chap-
ter deals with the capacity of a channel for discrete sources. Error
correcting codes and- continuous information are considered in
further chapters. Exercises at various levels of difficulty are
provided at the ends of chapters. Starred sections indicate topics
from which a selection may be made to suit particular require-
ments.

My thanks are due to my wife Ivy for her continued support
and forebearance, and to Mrs. D. Ross for managing to remain
cheerful while typing the manuscript.

Dundee D.S.J.
January 1978
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1 Elements of probability

The theory of information is based on notions drawn from
probability. Indeed, some people regard information theory as a
branch of applied probability. However, for much of the develop-
ment the amount of probability theory needed is not large and
the brief introduction given in this chapter should suffice for most
purposes.

1.1. Probability

The starting point for the mathematical theory of probability is a
real or imagined experiment such as tossing a coin, throwing a
die, drawing a card from a deck, counting the number of road
accidents on a day, tossing a coin ten times, and so on. After the
experiment a certain outcome is observed, e.g. the coin toss
resulted in a head, a 3 was thrown on the die, the ten of hearts
was drawn from the pack.

If the number of outcomes of the experiment is finite then finite
probability is involved; if the number of outcomes is countable
then the situation is one of discrete probability.

Tossing a coin once is an example of finite probability because
there are two possible outcomes, namely heads or tails, provided
the coin is not permitted to stand on its edge. Similarly, throwing
a die and drawing a card from a pack come within finite probabil-
ity, there being 6 and 52 possible outcomes in the two cases. If a
coin is tossed 10 times there are 1024 possible outcomes and
again finite probability is concerned. On the other hand, if the
experiment is tossing a coin until a head appears the possible
outcomes are

H,TH, TTH, TTTH, . ..

where H, T stand for head and tail respectively. Now the number
of outcomes is infinite but countable so this experiment comes
under the heading of discrete probability.

In advance of the experiment we do not know which outcome
will occur, but we associate with an outcome a probability p. It is
difficult to define precisely what is meant by p but the following
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conveys a rough idea. Suppose that the experiment is conducted
n times and the particular outcome under consideration occurs f
times. Then f/n is expected to approach p as n — »,

Since f cannot be less than zero nor exceed n, it follows that p
will be positive and lie somewhere between 0 and 1. Because
f=0 implies the non-occurrence of an outcome it is usual in
discrete probability to interpret p = 0 as meaning that a particular
outcome cannot occur. Similarly, p =1 is taken to signify that an
outcome is.certain to occur because, if f=n, the same outcome
appears after every experiment.

From now on, it will be understood that discrete probability
(which includes finite probability) is under discussion unless
otherwise is specified.

DerFiNmTioN 1.1a With each outcome O, of all possible outcomes

0,, O,,... of an experiment assume that there is an associated
probability P(O,) which is positive, lies in [0, 1), and is such that
P(O)+P(O)+---=1.

Making P(O,) positive and in {0, 1] is in conformity with
properties of p described above. The last equation of Definition
1.1a is merely an assertion that it is certain that there must be
one outcome from an experiment.

The notation P( ) will be used extensively to denote the
probability of the occurrence of whatever is between the parenth-
eses. Thus, in drawing a card from a pack, P(2 of diamonds)
would mean the probability of picking the two of diamonds.
 When the number of outcomes is finite, say n, and there is no
reason to suppose that one outcome will appear in preference to
any other

P(O))=P(O)="--- =P(0,).
It then follows from Definition 1.1a that, in fact,
P(O))=P(0,)=--- =P(0,)=1/n. (1.1.1)
An ideal coin should not favour heads or tails and so (1.1.1)
implies that
P(H)=P(T)=3.

If it should happen that P(H) =3, P(T) =1 the coin would not be
ideal but loaded or biased in favour of heads. It will be assumed
that coins are ideal unless otherwise stated.
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A perfect die is one in which no face is preferentially treated so
that, from (1.1.1),

P(1)=PQ2)= --- =P(6)=5.

It is conventional to assume that in drawing a card from a pack
(which contains 52 cards) any one is equally likely to be drawn so
that

P(8 of clubs) = 5.

Likewise, in bridge, where the pack is distributed in four hands of
13 cards, it is conventional to regard all distributions as equally
likely. The verification of this assumption in bridge would require
some 10°° experiments with well-shuffled packs and involve
millions of man-years.

The probability of an event E can be determined once a rule has
been provided which says for every possible outcome of an
experiment whether or not the event E has occurred. There is an
important distinction between outcomes and events. Outcomes
are fixed by the experiment and are not within our control. In
contrast, events can be chosen to suit our com\'enience.

DEeriNTION 1.1b. The probability of an cvent E is"the sum of the
probabilities of the outcomes in which E occurs.
For example, if a coin is tossed and E is the tossing of a head

P(E)=P(H)=4.

In the experiment of tossing a coin twice, let E be the event
that H appears only once. The possible outcomes are HH, HT,

TH, TT; and
' P(E)=PHT)+P(TH)=j+3=1.

When the number of outcomes is finite and they are all equally
likely, suppose k of them entail the event E. Then, from (1.1.1)
and Definition 1.1b,

P(E)=k/n.
The probability of any outcome cannot be negative and so

P(E)=0. On the other hand, p(e)< P(O,)+ P(O,)+ - - - and so,
from Definition 1.1a,

0=sP(E)<1. (1.1.2)
Of course, 1— P(E) is the probability that E will not occur.
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Let E, and E, be two cvents. Two new events can be defined
from them. E,U E, is the event in which either E, or E, or both
occur. E,NE, is the event in which both E, and E, occur. It may
happen that if E, occurs, E, cannot and vice versa. Then E, and
E, are said to be mutually exclusive and

P(E\NE,;)=0. (1.1.3)

This may be expressed as E, N E, = 0 on the understanding that 0
here stands for the null event and P(0)=0.
An important result is given by the following theorem.

THEOREM 1.1.
| P(E,UE,)=P(E\)+P(E,)-P(E,NE,)
and, if E, and E, are mutually exclusive,
P(E,UE,)= P(E,)+ P(E,).

Proof. In P(E,)+ P(E,) any outcome favourable to E, is counted
once and any outcome favourable to E, is counted once. There-
fore, outcomes favourable to both are counted twice. Hence, if
these are subtracted once, as is done by taking away P(E, N E,),
the outcomes favourable to either E, or E, or both are left. The
first statement of the theorem is consequently demonstrated. The
second assertion follows at once from (1.1.3) for mutually exclu-

sive events.
According to (1.1.2), P(E,NE,)=0 and so we infer from
Theorem 1.1 that

P(E,UE,)<P(E,)+ P(E,). (1.1.4)
‘Let E=E, UE,; then, from (1.1.4),
P(E,UE,UE,) = P(EUE,) < P(E) + P(E,)
<P(E,UE,) +P(E)
< P(E,)+P(E,)+ P(E,)

from (1.1.4) again. Obviously, the general formula is given by the
following corollary.

COROLLARY 1.1.

P(E,UE,U - )<P(E)+P(E,))+ - - -
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Example 1.1. In the experiment of tossing a coin twice let E,
be the event that a head appears on the first toss and E, the
event that a head occurs on the second toss. The possible
outcomes are HH, HT, TH, and TT each of which has probability
| because they are all equally likely. The ones favourable to E,
are HH and HT so that

P(El)z‘%—*—-}:%'

Similarly, HH and TH entail E,; so P(E,)=3.
For E, U E, the relevant outcomes are HT, TH, and HH while
E,NE, requires HH. Thus

P(E\UE;)=3, P(E,NE)=i.

These results are consistent with Theorem [.1 since

=t+i-d
1.2. Samples
Consider an alphabet of n letters a,, a,, . . ., a,. Pick r of them to
form, say, a;,a,,...,a;. This is a sample of size r. Often the

place from where the sample is drawn is called the population.

If each choice of letter in the sample is made from the entire
alphabet any particular letter may appear more than once in the
sample. This is known as sampling with replacement and, almost
without exception, is the type of sampling which arises in the
theory of information. On the other hand, if a letter once drawn
cannot be picked again, the process is sampling without re-
placement and no letter can appear twice or more in a sample.
There is no limit to the size of samples with replacement but, in
samples without replacement, r cannot exceed n because the -
population is exhausted when r=n.
" In sampling with replacement each choice of letter can be
made in n ways so that the number of different samples of size r
which can be selected is n'. If each of the samples is equally
probable the probability of one particular sample being thosen is
I/n" from (1.1.1). Such a situation is often described as random
sampling.

For sampling without replacement the first letter can be chosen
in n ways. Once it has been selected there are n — | possibilities
open to the second letter. After the first and second letters have
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been fixed there are n—2 opportunities for the third. Conse-
quently, the number of samples of size r (r<n) is n{n—
1) - - - (n—r+1). If the samples are equally probable the proba-
. bility of one of them is 1/n(n—1)- - (n—r+1); again the term
random sample is employed.

Keep r fixed and let n — . Then n—j is approximately n for
j=0,...,r—1 and

nn—1)---(n—r+1)~n"

Thus the two methods of sampling are virtually equivalent for
small samples from large populations.

1.3. Conditional probability

The probability of an event can alter as more is learned about it.
Suppose a card is drawn from a pack then the probability that it
is a queen is #=4. Suppose the further knowledge that the card
drawn is a knave, queen, or king is available. Then the probabil-
ity that it is a queen is 15 or . Conditional probability is the name
given to probability when extra information is at our disposal.
To see how to ealculate it consider a population of n people of
whom b are blonde and f are female. Let E; be the event that a
person chosen at random is blonde and E, the event that a
person chosen at random is female. Then, from Section 1.1,

P(E))=b/n, P(E)=fn.

Let f, be the number of females who are blonde. Suppose it is
known that the person chosen is female. Then the probability
that she is blonde is f,/f because f, of the f possible outcomes are
favourable. Let us agree to write this as P(E, | E,), meaning the
probability that a person is blonde knowing that the person is
female. Then

fo_fy.n_PENE)

f nf P(E,)

This formula is the basis of the general definition of conditional
probability (Definition 1.3).

Dermntrion 1.3. If P(E,)>0 the conditional probability P(E | E,)
is defined by

P(El lEz)=

P(ENE)

P(E|E))= P(E))
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P(E | E,) is the conditional probability of the event E given that
the event E, has occurred. .

When P(E,)=0, P(E }'E,) is apparently undefined but in the
context in which P(E;)=0 signifies that E, cannot occur it is
meaningless to talk about the conditional probability of E when

E, has occurred.
If Theorem 1.1 is applied to the events E,NE and E,NE,

PENEUE,NE)=P(E,NE)+P(E,NE)

But the event E,NEUE,NE is the same as E; UE,NE, and
E,NENE,NE coincides with E,NE,NE. Hence

P(E,UE,NE)=P(E,NE)+P(E,NE)-P(E,NE,NE).
Division by P(E) and use of Definition 1.3 gives
P(E;UE2'5)=P(El 'E)+P(Ez‘E)—P(ElnEz!E)»

In other words, Theorem 1.1 is unaffected by conditioning on an
event. As a consequence Corollary 1.1 holds under conditioning
on an event.

From Definition 1.3

P(E,NE,NE,) _P(E,NE,NE;,)
P(E,NE;)  P(E,|E;)P(E;)

P(E, !E20E3)=

whence

P(E,NE,NE,)=P(E, ‘ E,N Ea)P(Ez ' E;)P(E;).
(1.3.1)

There is no difficulty in generalizing (1.3.1) to more events, e.g.
P(E,NE,NE;NE,)=P(E,| E,NE;NE)P(E,NE;NE,)
=P(E,| E,NE,NE,)
X P(E, | E;NE,)P(E;| E)P(E,). (1.3.2)

Example 1.3. A carton contains 80 light bulbs of which 20 are
defective. A bulb selected at random is found to be defective.
What is the probability that a second bulb chosen at random is
defective if the first is not replaced?

Let E, be the event that the first bulb is defective, E, the event
that the second bulb is defective. We are asked for P(E, | E,).
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Given that E, occurs there are 19 defective bulbs in 79 and so

19
P(EzlEl)—%-
1
Since P(E')=Z’
19 1 19
PE:NEN=75"47316

which is the probability of two defectives on successive choices
before any selection is made.

1.4. Independence

It may happen that the occurrence or otherwise of an event E,
has no influence on the occurrence of E,. In that case
P(E, | E,) = P(E,) because E, conveys no knowledge about E,. It
follows from Definition 1.3 that P(E, N E,) = P(E,)P(E,) in these
circumstances. This is such an important concept that it deserves
its own definition.

DEeriNtTION 1.4. Two events E,, E, are said to be statistically
independent if, and only if,

P(E,NE,)= P(EI)P(E;)'

To put it another way, two events are characterized as statistically
independent when the probability of their joint occurrence is the
product of their separate probabilities.

Example 1.4a. A card is drawn from a pack. The probability
that it is a ten is 4/52 or 1/13. The probability that it is a spade is
13/52 or 1/4. The probability that it is the ten of spades is 1/52.
Since 1/52 =(1/4)(1/13), there is agreement with the idea that the
events of drawing a ten and of drawing a spade are statistically
independent.

Example 1.4b. In a random permutation of a, b, c, d the event
a precedes b is statistically independent of ¢ precedes d.

Example 1.4¢c. In an experiment the probability that E occurs
is p. If the experiment is repeated in an independent way the
probability that E will occur on the second experiment is also p.
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If E occurs on both experiments, the two cases are statistically
independent and so Definition 1.4 implies that the probability of
the double occurrence is p2. Similarly, the probability of r occur-
rences on r independent experiments is p".

When, in r experiments, E occurs only s times (s=<r) the
probability of a particular sequence is p*(1—p) " since 1—p is
the probability of non-occurrence of E on an experiment (Section
1.1). The number of ways in which E can occur s times is the
number of ways of selecting s slots from r, i.e. r!/s!(r—s)!. Hence
Definition 1.1b implies that E can occur exactly s times in r
independent experiments with probability

sir—s)! pr-py ™.

Note that this is consistent with the preceding paragraph when
s =r because 0!=1.

Example 1.4d. The probability that a lawyer has a car accident
in one year is p, and for a miner is p,. If there are S times as
many miners as lawyers, find the probability that one person
selected at random from the combined group will have an acci-
dent in the second year if the person has had one in the ﬁxstvyéar,.

Let E,, E, be the events of an accident in the first and second
years respectively. Since the lawyers form ; of the group and the

miners

P(E,)=4p, +2p.

The probability of a lawyer having an accident in both years is p,>
according to Example 1.4c. For miners the relevant probability is
p-°>. Hence

P(E,NE,)=p,>+3p,°.
Therefore
p.+5p,°

pit+5p2

is the desired conditional probability.

As a numerical illustration take p,=0.6, p,=0.06. Then
P(E,)=0.15, P(E,NE,)=0.063, P(E, | E,)=0.42. Thus, know-
ing that a person has had an accident one year increases the odds
(by almost a factor of 3) that the person will have a second

P(E;| E))=
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accident, indicating that the person chosen at random has a
certain proneness to accidents. This is in contrast to the probabil-
ity of two successive accidents being quite small when there is no
advance knowledge of an accident in one year. Statistical inde-
pendence is lacking here.

The notion of statistical independence can be extended to more
than two events. For example, three events are (mutually) statisti-
cally independent if and only if

P(E,NE,)=P(E)P(E,) (j*k)
P(E,NE,NEy)= P(E,)P(E,)P(E,),

i.e. not only are the events independent in pairs but also the
probability of the triple is the product of thethree probabilities.
Similarly, for the independence of four events, they must be
independent in pairs, in triples and the probability of the four
must be the product of the four probabilities. The generalization
to n events is immediate.

1.5. The law of large numbers

In many situations it is convenient to classify the result of an
experiment as either a success (S) or a failure (F). What consti-
tutes a success is not of concern but it can be chosen to suit our
own purposes. Repeat the experiment until it has been carried
out n times, each repetition being independent of the others, and
count the number of times that S occurs—say, S,. Then, if p is
the probability of S on a single experiment, the behaviour of S, is
governed by the Law of Large Numbers.

LAW OF LARGE NUMBERS. Given arbitrarily small ¢ >0 and 8>0,

then
P( S

P

<e)>1—8

for sufficiently large n.

This is a standard result which can be found in textbooks on
probability and no proof will be given here.

If it were legitimate to place ¢ and 8 equal to zero the law
would state that it was certain that S,/n was p. Because this is
illegal the most that the law suggests is that S,/n approaches p as
n — =, in conformity with the earlier rough idea of probability in
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Section 1.1. But one must not be read more into the law than is
actually there. The law is a statement about probability and
asserts that it is almost certain for large n that S,/n will be near p,
but not that it is absolutely certain. In other words, S,/n can
fluctuate quite widely from p (and in practice usually does) but
only for rare values of n.

Example L.5. In an infinite decimal let the occurrence of 5 be
regarded as a success and any other digit as a failure. If all digits
are equally likely p=1/10. Then the law of large numbers says
that, of the first n figures, n/10 will be 5 with high probability as
n-—>o,

Similarly, in an infinite sequence of binary digits, the first n
figures will contain pn zeros with high probability as n — o« if p is
the probability of 0 occurring at any place.

Exercises

1.1. Two dice are thrown. List the possible outcomes of the experiment.
Do you think that the sum of two faces is as likely to be 3 as to be 77

1.2. From five digits 1, 2, 3, 4, S one is chosen and then a second
selection is made from the remaining four digits. Find the probability
that an odd digit will be chosen (a) the first time, (b) the second time, (c)
both times.

1.3. Let every permutation of the four symbols a,, a,, a,, a, be equally
probable. Let E, be the event that a; appears in the jth position. Verify
that

P(E,UE;) = P(E,)+ P(E;)~P(E,NE3).

1.4. Two dice are thrown. E, is the event that the sum of the faces is
odd. E, is the event that at least one 1 is thrown. Describe E,UE, and
E\NE,; find their probabilities.

1.5. A coin is tossed until the same result appears twice in succession.
With edery possible outcome requiring n tosses associate the probability
1/2". Find the probability that the experiments ends (a) before the sixth
toss, (b) after an even number of tosses.

1.6. How many different sets of initials can be formed if every person

has one surname and (a) exactly two forenames, (b) at most two )
forenames. Deduce that in case (b) some people have the same initials in

a town of 20 000 inhabitants.



12 Elements of probability

1.7. Three dice are thrown. If no two faces are the same, what is the
probability that one is a 3?

1.8. The probability that a man will live 10 more years is 0.4 and the
probability that his wife will live 10 more years is 0.5. Find the
probability (a) they will both live for 10 years, (b) at least one will live
for 10 years, (¢) neither will live for 10 years.

1.9. Of three cards one is marked 1 on both sides, one has (0 on both
sides, and the third has 1 on one side and 0 on the other. A card is
selected at random and found to have 1 on one side. What is the
probability that there is 1 on the other side?

1.10. A television advertisement for perfume is seen by 40 per cent of
the nation. If the probability is 0.1 that a person who sees the advertise-
ment buys the perfume what is the probability that a person picked at
random will have seen the advertisement and bought the perfume?

1.11. The probability that a child is born a boy is : and the probability
that a family has exactly k children is p, with p,+p,+---=1. What
is the probability that a family has boys but no girls? If it is known
that the family has no girls, what is the probability that it has only one
child?

1.12. In Exercise 1.11, p, =ap" for k=1, a being a positive constant
and 0<p<1. Show that the probability that a family contains m boys
(m=1)is 2ap™/(2—p)™"*'. Given that a family includes at least one boy,
what is the probability there are two or more?

1.13. Blondes are always on time for appointments, redheads are always
late, and brunettes toss a coin for each appointment to decide whether to
be prompt or late. The numbers of blondes, redheads, and brunettes are
in the ratio 1:1:2. If a female arrives on time what is the probability
that she is (a) blonde, (b) redhead, (c) brunette. If she arrives promptly
for three successive appointments, what is the probability that she is a
brunette?

1.14. The events E,, E.,....E, are statistically indcpendent and
P(E,) = p,. Find the probability that none of the events occurs.



2 Basic concepts

Before introducing some of the definitions of information theory,
it is desirable to remove one possible cause of misapprehension.
Possible combinations of the letters a, n, and t are tan, ant, nat.
These words may have meaning and significance for readers but
their impact on individuals will vary, depending on the reader’s
subjective reaction. Subjective information conveyed in this way
is impossible to quantify in general. Therefore the meaning of
groups of symbols is excluded from the theory of information;
each symbol is treated as an entity in its own right and how any
particular grouping is interpreted by an individual is ignored.
Information theory is concerned with how symbols are affected
by various processes but not with information in its most general
sense.

2.1. Self-information

Let S be a system of events E,, E,, ..., E, in which P(E,)=p,
with O<p; <1 and

pitp2t - +p.=1
Then we introduce the following definition

DeriNmTiON 2.1, The self-information of the event E, is written
I(E,) and defined by

I(E,) = —log px.

The base of the logarithm is not specified in the definition. For
‘most of our work it will not matter what base is chosen since a
change of base merely alters the scale of units. The most common
bases encountered are 2 and e. With base 2, I is measured in bits
(an abbreviation of binary digits) whereas, in base e, the units of I
are nats (to indicate that a natural logarithm is involved). The
number of nats is 0.693 times the number of bits. Normally, no
special choice of base will be made (other than requiring it to
exceed unity) but when the base 2 is employed this will be shown



