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PREFACE

 The theory of Lie groups rests on three pillars: ana.lysm, topology

. method of constructing covering groups.

and algebra. Correspondingly it is possible to distinguish

- several phases, overlapping in some degree, in its development,

It also allows one to regard the subject from different points of
view, and it is the algebraic standpoint which has been chosen
in this tract as the most suitable one for a first introduction to
the subject. B

The aim has been to develop the beginnings of the theory of
Lie groups, especially the fundamental theorems of Lie relating
the group to its infinitesimal generators (the Lie algebra); this
account ocoupies the first five chapters. Next to Lie’s theorems
in importance come the basic properties of subgroups and
homomorphisms, and they form the content of Chapter VI.
The final chapter, on the universal covering group, could perhaps
be most easily dispensed with, but, it is hoped, justifies its
existence by bringing back into circulation Schreier’s elegan

Of course whatever outlook is adopted, it is necessary to have
a.number of tools at one’s disposal, and these have been provided
in the beok as far as possible. Thus before we come to Lie
groups proper, the notions of analytic manifold and topological
group are introduced. Lie algebras and exterior algebras are
brought in later s they are needed, while theorems from
analysis, such as the existence theorem for the solutions of total
differential equations and the implicit function theorem, are
proved in an appendix. It has been assumed that the reader has
some knowledge of algebra and topology, but this need only
include the elementary properties of groups and vector spaces,

- and the elementary notions of analytic topology.

This book owes a great deal to my colleagues in Manchester;
when I gave a course on the subject in 1954, their comments
showed me how much I had still to learn, and I had some
opportunity of doing so in subsequent discussions with them.
In particular, Dr Graham Higman and Mr G. E. H. Reuter, with
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their advice and comments on the earlier parts of the manu-
script, saved me from a number of errors. Dr J. A. Green read
the whole manuscript and made many valuable suggestions, and
Dr P. J. Hilton read parts of the manuseript including the last
chapter, which was much improved as a result. To all of them I
should like to express my gratitude.

‘ P.M.C.

MANCHESTER
‘September 1956
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- INTRODUCTION

The theory of continuous groups, or as they are now called, Lie
groups, was developed by Sophus Lie (1842-99) in connexion
with the integration of systems of differential equations. Thess
groups first arose as groups of transformations, while now they
are considered just as groups in the abstract. This is similar to
the situation in algebra where groups themselves appeared as
permutation groups before they came to be regarded as abstract
groups. .

We oan see how such a transformation group arises by con-
sidering the system of differential equations ‘

%gd"(z) (¢=1,...,n), (1)

where z; are the Cartesian coordinates of a point z in real
Euclidean n-space. Taking n = 3, we can interpret the system (1) ~
as follows: We have a fluid moving in space and the velocity of
the particle of fluid at the point = (%) has the components u,(x).
Let us consider the particle of fluid which at time ¢ =0 is at z and
ask for its position at some subsequent time ¢> 0. The answer is
obtained by integrating the equations (1), and is of the form
. T =fa,1). _ 2)
We can think of (2) as defining a transformation of the whole of
space; with each point x we associate the point 2’ which is reached
by the fluid initially at z after a time t. We express this by
writing o' =x8,; :
thus (8)) is a family of transformations of space, and it is easy fo
see that these transformations form a group (if we assume that
the equations (1) can be integrated for all z): :
ZS‘SP= zSM, xlgo =, xS‘S_‘ = (for my Point 3).
This group of transformations, regarded as an abstract
group, is isomorphio to the additive group of real numbers. t

1 Provided that the fluid never returns to ite initial state (see 2.9, in
& partioular Theorem 2.9.3).

4 CLG
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But the way in which it arose emphasizes some special features
of it:

. (i) The suffix of the transformation which corresponds to the
product 8,5, is given by the function

Sl ¥) =t +t'

of two variables which is continuous and even d.lﬁ'erentla.ble.
(ii) If we write (1) in the form

; oz, =wu,(x)dt,
we can-consider it as an ‘infinitesimal transformation’
x> x; +0x,, (3)

and we may think of each transformation 8, as built up by
iterating the infinitesimal transformation (3). This shows that in
- some sense our group may be thought of as the analogue of a
cyelic group, with (3) as its (infinitesimal) generator.

(iii) In order to obtain a group of transformations we had to
postulate that the equations (1) have a solution for all values of z.
In general, this may not be so, and we then obtain, not a group of
transformations, but only a portion of a group.

This indicates the features which we shall expect of a Lie

group. Thus it must be possible to introduce a coordinate system
into the group, or at least part of it, such that the multiplication
law of the group is expressed in terms of this coordinate system by
differentiable functions. The most convenient way of taking
account of the fact that this coordinate system may not be
everywhere defined is to postulate that our group is a topological
space in which the group operations are continuous, i.e. a
topolegical group, and that a coordinate system is defined on
some neighbourhood of the unit element. One can then show
that although there need not be a coordinate system for the whole
group, at least there is one defined on a neighbourhood of each
point.

Ina topologxca.l group, as in every topological space, one can
distinguish between local properties, such as being locally eom-
pact or locally connected, and global properties which refer to
the space as a whole. Moreover, in a Lie group one can go beyond
the local to the infinitesimal. Thus one can show that a Lie

%
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group of transformations is generated by a finite number of
infinitegimal transformations. In case the Lie group is given
abstractly, we simply regard it as a transformation group by
letting it act on itself by right translations. If the multiplication.
law is given by n differentiable functions ¢,(z,y), representing
the ooordinates of the produot xy, then the general infinitesimal

, - right translation is obtained by expanding the ¢’s in a Taylor

series with respect to the y’s and neglecting powers higher than
To consider infinitesimal transformations instead of the finite
transformations is to linearize the problem. Thus to the product
of two elements of the group corresponds the sum of two
infinitesimal transformations; so the latter form a linear space.

Another operation is obtained by considering the commutator

z~y~1zy of two elements of the group. This corresponds to a kind
of product of infinitesimal transformations, and relative to this

product the infinitesimal transformations form a non-associative
linear algebra which is known as the Lie algebra of the group.

- This algebra is perhaps most familiar in the case of the group of
rotations in 3-dimensionsl Euclidean space. It is well known
that the infinitesimal rotations in space can be represented by
vectors, and with this convention the usual veotor product is just:
the multiplication for which the vectors form the Lie algebra of :
the rotation group. R

~ One of the basic achievementa of Lie’s theory was to determine

a set of oonditions satisfied by the Lie algebra of a Lie group and
to show that any linear algebra satisfying these conditions .
belongs to a Lie group. { It is this part of the theory, establishing
the oonnexion between Lie groups and Lie algebras, together
with the more fundamental properties of Lie groups, which we
shall present here.

1 Lie himself only considered this problem locally, i.e. he was only concerned
vﬁthobnltrnetEgaportionofthagmupnmrtheunitehmant.Thoﬂnnlsup

of embedding any such ‘local’ Lie group in a ‘global’ group .s based on &

comparatively recent theorem and belongs more to the theory of Lie algebras.
For this reason & proof of this result has not been included (see Chepters VI,
VII). :
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OHAPTER I
- ANALYTIC MANIFOLDS

- 1.1, Charts and coordinates. One of the basic concepts to
be used is that of the n-dimensional real Euclidean space, We
-denote this space by R*, and indicate the coordinates of a point
by attaching supersmpta Thus if e R®, the coordinates of z
are written 2%, 2%, ..., 2", or more briefly 2¢(i =1, ..., n). By means
of the usual metnc on R»

d(z,y) ={Z (fc‘ ¥,

a topology is defined on R*, which allows us to rega.rd it as &
Hausdorff space.t

More generally, we shall consider spaces which behave locally
like R*. Thus consider a topological space T end let W be & non-
empty open subspace of 7" which is homeomorphic to an open
subspace X of R*. If o: p—p” denotes a homeomorphism of
_ W onto X, we call o a chart in T, or, more precisely, on W. In a
given chart o on W, each point p of W corresponds to a point
z =p? of R"so that p may be described by ¥, the coordinates of z.
The numbers z* are called the coordinales of p (in the chart o)
and = is the dimension of the chart.

Now suppose that there is & homeomorphism @ of X onto . -

another open subspace Y of B* and let ¥ be its inverse. If
y =22 is the general point of ¥, with coordinates ¢ (i=1, ..., %),
then ® and ¥ may be described by means of continuous fnnotiona
- gland ¥t i_giaa L am)) .

; )] G -
Occasionally we shall use the letter z to denote the set of coordi-
nates (z', ..., 2*) as well as the point of R* which they represent.
Then the a.bove equations of transformation between z and y
i b S S gy )

d=y4y) (ye¥).

t For the topological concepts used, see, for example, Bourbaki[1).
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If we combine the mappings o and ® from W to Y, we obtain
the homeomorphism o®: p—(p°}® of W onto ¥, go that o® is
again a chart on W.

Conversely, if o and 7 are any two c“ar‘uson the same subspace
W of T, mapping W inte X and ¥ respectively, then ®=0—'risa
homeomorphism of X onto ¥ with inverse ¥ =710, so that the
coordinates z and y of corresponding points in X and ¥ are
related by equations of the form (1). We may regard the passage
from  to v as a change of coordinates, and what has been gaid
shows that the equations (1) (with continuous funetions ¢* and
¥*) are the most general equations describing a change of

coordinates.

Two charts in 7' whose coordinates are rela.ted by the equations
(1) are said to be analyiically reloted at a point p of T, if they are
defined on & neighbourhoodt of p, and if the functions ¢¢, Yt
oceurring in (1) are analytic functions of their arguments at z*
and p” respectively. Here a function f(z) is said to be analytic at
the point @ of R i. it can be expressed as a convergent power
series in % —a (¢ =1, ..., n) in some neighbourhood of the peint «.
If two charts are ana,lytxoa.lly related at every point of 7' &t which
both are defined, we say that they are analytically relaied. This
is true in particular if there is no point at which both charts are
defined.

1.2. Analytic structures. A topological space T is said to
be locally Euclidear at & point p, if there exists a chart o on a
neighbourhood of p; we then say that o is a chart af p. A Haus-
dorff space which is locally Euclidean at each point is called &

manifold. Thus in 2 manifold M each point has a chart defined on
some neighbourhood, a property which may be expressed by
saying that the family of all charts in M covers M

fItfollmfmmthotheoremonthemvmmoeofthedmmonthmm
nhnrhonthoumembnwthemdmm(ne,formple,ﬂm
W. and Wallman, H., Dimension Theory, Princeton, 1841). For the particular
¢ase with which we are concerned—that ofanslytiodly related charbs-—tlm
will be proved directly in 1.4.

1 We use the term ‘neighbourhood’ mihnnnnofBourbAh A neighbour-
hoodofspomtpmatopohgmd-mehsmMofTwhiohomtumpin
its interior.
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In this definition all the charts in M were admitted. We now
. restrict the class of charts in order to obtain a more specific
* structure.

Dxvinrrion. Let M be a Hausdorff space. Then an analytic
structure on M is s family F of charts defined in M such that
M.1. At each point of M there is a chart which belongs to F.
M.2. Any two charts of F are analytically related.
- M.3. Any chart in M which is analytically related to every chart
of & itself belongs to F.
- Weehall express M. 2 and M. 3 by saying that & is analytic and
maximal, respectively. Thus an analytic structure on M is a
maximal analytic family of charts covering M. It is clear that a
Hausdorff space with an analytic structure is necessarily a
manifold, and the space, together with this structure, is called
an analytic manifold. By a chart in an analytic manifold we
- always understand a chart belonging to the analytic structure.
- ‘When we wish to stress this fact we refer to the members of the
structure as admissible charts.

In practice it is usually impossible to obtain a maximal
* analytic family covering & space by an explicit construction.
This difficulty is overcome by the following theorem which
shows that it is sufficient to construct any analytic family
' covering the spave.

Tazorem 1.2.1. Let M be a Hausdorff space and € an analytic
Jamily of charts which covers M. Then there is a uniquely determined.
maximal analytic family of charts which contains €.
Proof. Let F be the set of all charts in M which are analytic-
ally related to each member of %; we shall show that # has the
~required properties. Let us express the fact that two charts o
and 7 are analytically related at p by writing o 37, If p, oand 7
are any charts at p, then it is easily verified that p P, that
p 3 oimplies o 3 p, and that p 3 0, o 37 imply p 7. Thus ‘3’ is
an equivalence relation on the set of charts at p. Now et p, and
p3 be any members of # and let W be the intersection of the sets
on whieh p, and p, are defined. As an intersection of open sets W
is again open. If W is empty, then p, and p, are analytically
related by definition. Otherwise let p be any point of W; since W



§1.2] : ANALYTIC MANIFOLDS ' 1

is open it is a neighbourhoed of p, and since € covers M, there is
a chart o at p which belongs to €. By definition of &, p, 3 o and
py 3 @, whence p, 3 p,. Thus p; and p, are analytically related at
ea.ch point p of W, and hence they are analytically related. This
proves that & is analytic. Clearly & 2, and if 7 is analytically
related to each member of # then it is analytically related to
each member of € and hence belongs to . Thus & is a maximal
analytic family containing €. If &, is another maximal analytic
family containing %, then each member of &, is analytically
related to each member of € and therefore belongs to 5. Hence
F, <%, and similarly < &, which proves that #, =% . Thus
& is unique and the proof is complete.

The family % in Theorem 1.2.1 covers M (since ¥ does) and

. therefore defines an analytic structure on"M. So in order to

define an analytic structure on a space M it is enough to specify
an analytio family of charts which covers M. Of course there may
be different analytic families covering M which define the same
- analytio struoture. The necessary and sufficient. condition for
this to be the vase is’ g1ven by the

CoROLLARY. Let €, and €, be two analytw families of charts
covering a space M. Then there is a maximal analytic famdy
containing €y and €, if and only if for each point p of M there is a
chart of € which 18 analytically related at p to a chart of €,.

The condition is clearly necessary. Conversely, if it is satisfied,
then by the argument used to prove Theorem 1.2.1, every chart

 of ¥, is analytically related to every chart of ¥, and hence the

family € of all charts belonging to ¥, or ¥, is analytic. If # is
the maximal analytic family containing %, then # =€, and
F 2€,; this proves the corollary. :
As an example let us consider the surface of a unit sphere S in
three dimensions. At any point p on 8 take a great circle C
through p and take a system of latitude and longitude with C
as the equator and p as defining the ‘Greenwich meridian’. If
. the poles of 8 with respect to C' (‘north and south poles’) are
joined by a line / not passing through p (the ‘date-line’), then the
complement of I is a neighbourhood of p on which latitude and
4 - longitude define a chart. If the same construction is carried out
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for another point ¢ of 8, then the two charts are analytically
related. This is easily verified by choosing the centre of S to be at
the origin (0, 0, 0), the point p at (1, 0, 0) and by observing that
the Cartesian coordinates of the general point of § in terms of
latitude 6 and longitude ¢ at p are (cos & cos @, cos @sin ¢, sin 6).
By equating these expressions to the corresponding expressions
in terms of the chart at ¢ we obtain analytic relations which can
be solved for either set. Thus we have an analytic family of
charts covering 8, and by Theorem 1.2.1 this defines an analytic
structure on 8.

Another analytic family covering S may be obtained as follows:
We take p € 8 to be the north pole and consider the stereographic
projection from the south pole on the plane through the equator.
This is a homeomorphism of the punctured sphere (namely, the
sphere with the south pole removed) and the Euclidean plane,
and hence defines a chart at p. In order to obtain the coordinates
of the general point ¢ in this chart, we map it into g,, the point in
which the straight line from the south pole (0, 0, — 1) to ¢ cuts
the (z, y)-plane. If the Cartesian coordinates are (z, y, 2), its
coordinates in the chart are ( T z) the plane coordinates
of g,. It is again not hard to ven.fy that if such a chart is con-
structed at each point of 8, then these charts form & second
analytic family. Moreover, the charts in these two families are
analytically related. Hence, by the corollary to Theorem 1.2.1,
these two families are contained in the same maximal a.nalytlc
fa.mlly and therefore define the same analytic structure. :

We note the following examples of analytic manifolds:

1. The space R*. The Cartesian coordinates in B* serve as a

chart at every point. We shall denote the analytic ma.mfold 80
defined by R*; for R we shall also write R.

2.' The torus 7. This is the subspace of the n-dlmemnon&l
oomplex Euchdea,n space deaonbed by

2 _exp2m0 (0<6,<1). (2)

Topologmally the torus is the Cartesian product of » circles. In
particular, for n = 1 we obtain a eircle, and for n«= 2 the familiar
anchor fing. The formulsa (2) can be used to define an analytic

€

~
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structure on 7'*, and the analytic manifold so obtained is denoted
by Z". We also write T instead of T and sometimes refer to &
as the (analytic manifold of) real numbers mod 1. :

3. The set GL(n, R) of all automorphisms of & vector space V
of dimension » over R, that is, the general linear group. In terms
of a given basis of ¥ the automorphisms may be expressed as
non-singular n x » matrices with coefficients in R, and the n?
coefficients serve as a chart at each point of GL(n, R).

4. A single point, or, more generally, any discrete space,t
may be regarded as a ‘zero-dimensional’ analytic manifold.

Ex. Show that there are distinct analytio structures on R
which induce the same topology (consider the coordinate trans-
formation y=2z3).

1.3. Real functions on a manifold. Let M bo & manifold
and f a real-valued function defined on a part (possibly the
whole) of M. We shall express this by saying that f is defined in

* M. If o is a chart on some subset W of M on which fis defined,

then we can express f as a function of n real variables by writing

F@)=f(), ®

where 2= p" If 7.is another chart on W which is rela.ted to o by
(1),thenweoa.nexpress feimilarly in terms of 7: f(p) =f(y) (y=p").
It is clear that f and f are related by the equations.

f(z) =}'(¢(x».}
Fo)=fw).

which hold identically in  and y.

In the foregoing discussion, where only two charts occurred, it
wasmore convenient to denote the coordinates of the general point
» in these charts by z and y respectively instead of » and p'.
We shall adopt this practice generally and even refer to a
given chart by naming the coordinate functions which it defines,
rather than by its proper name. For distinction we enclose the
symbol for the coordinates in brackets; thus in future we shall
usually speak of charts (), (%), ... and not o, 7, ....

1 A topological space is said tobeducrdo,nfmymbntoondltmgofn-ingle
point is open.

@
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A real-valued function f defined in M is a mapping of one
_ topological space into another, and so we know what it means
. for f to be continuous. From the definitions in 1.1 and 1.2 we see
that f is continuous at a point p if and enly if its expression in
terms of a chart at p is a continuous function of its » arguments
‘at p. If M is an ana.lytxc manifold, we shall say that a real-
valued function f in I is analytic at a point p if it is defined on
some neighbourhood of p and its expression in terms of an
admissible chart o at p is an analytic function of its arguments
at p7. It is easily verified that this definition does not depend on
- the choice of the chart o. A function which is analytic at every
point at which it is defined is called analytic. We shall denote by
&, the set of analytic functions which are defined at p, and by .o
the set of all analytic functions in 9%. :
Ez.1. Ananalytic function of an analytic function is analytic.
Ez. 2, Each coordinate of an admissible chart is analytic.

~ 1.4. Tangent vectors. Let I be an analytic manifold, p a
point of M and (x) a chart at » (understood to be admissible).
Suppose that we are given a certain direction at p; this may
be specified by laying a smooth curve through p in the given

direction, and deseribing the curve by a parameter #:

¢=x*(t)sxz+m+0(t“) : (8)

for small ¢. Here 2§ are the coordinates of p and the A’ are
constants which do not all vanish, provided that ¢ is suitably
chosen. By differentiating (5) we obtam

[l

and these numbers A¢ define the given direction completely.{
For example, given an a.nalytm function f defined at p: f(z), its
derivative in the direction given by (5) is

[d,f(z«»] -[L]. ®

t However, the direction depends only on the ratios of the A’s and not on
the A’s themselves.
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On the right the summation convention has been used, which
consists in summing over the apprapriate range—usually from
1 to n—with respect to any suffix (in this case ¢) which occurs
twice. We shall use this éonvention throughout the text, except ~
when otherwise stated. The subseript p in (6) indicates that the
function in square brackets is to be evaluated at the point p.

The formula (6) suggests considering L = At. 302 (evaluated
at p) as an operator on &7, with real values. Accordingly we
define: An operator of the form L =A%.9/dz¢, where the A* are
any real constants, will be called a tangeni vector at p. The
definition involves a partioular chart and we therefore give an
alternative characterization of tangent vectors in

Tugorem 1.4.1. A mapping L of o, into R is a tangent vector

if and only if it is linear over R:

Lf+8g)=a.If+B.Ig (f.gesl,; @, feR), (1)
and satisfies
' I(fg)=Lf .9(p) +f(p). Lg - (f, gesL}). (8)

For clearly every tangent vector satisfies (7) and (8); equation
(8) is just the product rule for differentiation. Now let L be a
mapping of &, into R which satisfies (7) and (8). Then for any

i\ . constant functlon ¢ in &,, weé have

Le=c.Ll1=¢(L1.1+1.L1)=2Le,
whenoe Le=0. Now létfedj,; near p we may express f as
£() = (o) + oyfart — ) + (2 — 2§) (@ — 2 g,(2),
where g,,€4/,,, x§ are the eoordinates of p and ¢,=[2f/da%],,.
Applying L and using (7), we obtain _
Lf =Lf ) + 6. L@ ) + L((& —af) (& o) gu@)).
The first term vanishes because f(z,) is constant. For the last
sum on the right we have, by (8),
_L( (@* —af) (+7 — 2}) g15())
= L(2* —23) [( — 2) g.;), + L(o* — ) [(=* — 28) 9451
+L(gsg) [(=* — 23) (& — )], = 0.
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Hence

Lf=Lat o= L' [a ] ie. L=A-0, whero Af=Ia.
Thus L is a tangent vector, as was to be proved.
We have proved incidentally that a tangent vector L may, in
any chart (x), be expressed by the formula .
- o . a % g “".'
e Tt 2
L=Lx 5 ' 9)
If L, and L, are tangent vectors at p, and «,, aze R, then
0ty Ly + ag Ly, defined by (g Ly +ag Lig) f =ty Ly f+ a5 L, f, is again
a tangent vector at p; therefore the tangent vectors at p form a
vector space over R. We shall denote this space by £,

TaEorEM 1.4.2. If (2) is an admissible chart at p, then the
tangent vectors 0[ox* form a basis of the space &,,.

Proof. Tt is clear that the operator 9/oxz*: f— [0f/02%], is in 2,
and equation (9) shows that the 0/0x* span g,. To prove their
independence, suppose that there is a linear relation between -

them, say £
L=Xi55=0. (10)
Since the jth coordinate 27 is in &7, we may apply L to ii:
£ uﬁ"
0=Lot =225 .

This shows that all the coefficients A7 in (10) must be zero and the
theorem follows.

Suppose now that () and (y) are two charts at p, of dimensions
m and n respectively. By Theorem 1.4.2, each of the seis
ojoxt (i=1,...,m), ¢[oy!(j=1,...,n) is a basis of &, and hence
m=mn. This proves

TaroreM 1.4.8. Al admissible charts at a given point of an
analytic manifold have the same dimension.

We may therefore define the dimension of an analytic manifold
at a point p as the dimension of any chart at p. If a mdnifold has
the same dimension n at all its points, it is said to be of dimen-
sion n. It is usual to require that a manifold shall have the same
dimension at all its pointe; although we do not make thizs
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assumption explicitly, it is in fact true in all the cases which we
- consider.

Asanother apphca.tlon of (9) we derive the formula for a change
of coordinates in £,: If (y) is a second chart at p, then by (9),

[y‘] o’

ayb=akaz¢, (11) <

where of = [0a%/dy*], is the Jacobian matrix of the equations
of transformation, Thus in the space £, of tangent vectors we
can describe all coordinate changes by linear transformations.
Together with £, we wish to consider another vector space
associated with the point p, namely, the dual space 27 of £,.
For the sake of clarity we shall, in the next section, briefly
review the properties of the dual space which we require.

Hence

- 1.5. The dual vector space. Let ¥ be a vector space over R.
A linear form on V s a mapping £ of V into R: v—>(v, ), such
that (oo + Ao, £) =au, £+, £) (u,veV;a, feR).

The set of all linear forms on ¥ will be denoted by V*. We can
define addition and multiplication by scalars in V* as follows:

(u, af + )y =alu, E) + flu, 7) (ueV;§, Wé V*; a, ﬂER)_'
It is easily seen that with these definitions V* is a vector space
over R. It is called the dual space of V, and (u, £) is called the

inner product of u and £.
Koy,.. ,v,,ma.bamsofl?' then the general element v of ¥V has

the form v=2Afv,, (12)

and for any suffix j the mapping v— A’ is a linear form on ¥,
which thus defines an element £7 of V*. With this notation the .
expression (12) for the general element of ¥ becomes .
v= (v, EHv,. (13)
We shall prove that the £* (i=1, ..., n) form a basis of. V*. For
this purpose we note first that :

(o Ey=8, (14)



