@ — rOUNDATIONS OF

Softwa re

Aditya P. Mathur =
T B K

Pl T b W ORR A

China Machine Press

S CEETE

(R3ZhiR)

 Foundation|

Aditya P. Mathur
® G gze ¥

English reprint edition copyright © 2008 by Pearson Education Asia Limited and
China Machine Press.

Original English language title: Foundations of Software Testing (ISBN 978-81-
317-0795-1) by Aditya P. Mathur, Copyright © 2008 Dorling Kindersley (India) Pvt. Ltd.

All rights reserved. This book is sold subject to the condition that it shall not, by
way of trade or otherwise, be lent, resold, hired out, or otherwise circulated without
the Publisher’s prior written consent in any form of binding or cover other than that in
which it is published without a similar condition including this condition being
imposed on subsequent purchaser and without limiting the rights under copyright
reserved above, no part of this publication may be reproduced, stored in our
introduced into a retrieval system, or transmitted in any form or by any means
(electronic, mechanical, photocopying, recording or otherwise) without the prior
written permission of both Pearson Education Asia Limited and China Machine Press.

Published by Dorling Kindersley (India) Pvt. Ltd., publishing as Pearson Education.

For sale and distribution in the People’s Republic of China exclusively (except
Taiwan, Hong Kong SAR and Macau SAR).

A 453 3 22 E1 ik HiPearson Education Asia Ltd $24HLAK T b S iR s S Y
MR, REHREBEFAT, AELAEMFREHRPEEABAR.

R FREANRKMESEN (FREPEEER. RIIEINTERENFES
Bihx) HELXT.

AHHE M A Pearson Education (FAEHF WHMER) BOEBiWIRE, Thr
EETRHE.

R, BRLR.

AfxEmiE EEHREABRNESA

APRIN DS, EF. 01-2008-3271
BH#ERAE (CIP) iR

BN EMBRE (30R) / (%) BE (Mathur, A P) 3. —Jb3: #L
Wk iR, 2008.8

(2 HFRRPE)

4R 3. Foundations of Software Testing

ISBN 978-7-111-24732-6

.8 TS TR — MR — 4t — 33 V. TP31L.5
FE R A B 5 TECIPR R T (2008) 551099925

PFURE ol HAR A (bsvii sk X & 5 ik i#22% WRECHAS 100037)
wiEgaiE: BiIRE

e FALHEIR) BRI - FEBELRRITA AT
200848 A 55 1hi 55 1K EN Al

145mm x 210mm + 22.125E[I5k

FrifE352. ISBN 978-7-111-24732-6

ZEfr: 49.005C

JUA$, mAERT., B, 6, AAEXTHiER
A lgHHek. (010) 68326294

HAREMIE |

:
g

i

XEESARE, FRiiKOFHEEMmES R EARE, #
B ERKEBRBENEANRIG T 2R hiERXE
Mfss, EXEERBHEARRBRNATZERALKEN. MENE.
Rl femitd, RN LR SHEFEREEERE S, it
BHLER T £ R I RN & R BRI B AT S, Wt
FEE S BB EE, AR THERTERE, B8R T FEARNIE
2, BREEFEANE, XAFEEEME, ROrEHFASZEE AR
ARG .

LA, fE2ERE BAAKEMHESD T, RERHFEIL L& BRI,
& AFRIFRA BT, X3 THELEE 50 S EREE R AL
B, hEkE: MELEMMBERERETRK LEAXERE. &
HZEFEEAXENRAZEMNIRT, EEFREERELHRENL
&% RO TERREMEBROZBEM AT L EREEZL.
FE, slgFE—#EMEFITHEEM B RETELETELNLR
REIBRMEDNEM, hREHAER, BERAENER—EX
2 MBHZE,

LA Tl AR AL AT R B IRE “HREAEFRS. A
19984EJF 4, AEE bl TIEE FURAE T8k, BiFESMEF Br
t. 253 FEHTWE D, Fl15Pearson, McGraw-Hill, Elsevier,
MIT, John Wiley & Sons, CengageZit R ¥E & HIRA TR T R
MAEEXZ, MbMEA KT F Zb o+ Bk tH Andrew S.
Tanenbaum, Bjarne Stroustrup, Brain W. Kernighan, Dennis Ritchie,
Jim Gray, Afred V. Aho, John E. Hopcroft, Jeffrey D. Ullman,
Abraham Silberschatz, William Stallings, Donald E. Knuth, John L.
Hennessy, Larry L. PetersonZ ki & K HI— L 8/ER, UL “HE
HLBHENE” hEfRER, ®iRE%>], MARER. KEASEN
HE, EFEDRTXEMNBR R,

iv

“HEILFHEAS” R TIESE TENIMEENR DD,
ENNERANRE THENEEES, CAFFEHBETHiE
MHERTIIE, MEBHESOAYSELEREFENEE, §
MEERAKBPERERF, €4, “UHHEILBZEAE" B2HR
TEWBEA R, SELEEZREPRLTRANOR, FHET2
RERRAAERBHMSEHE, HYHR “@UFRBE" Eh
ok ok ot RS R 2 S LI B R TR

WEBHIEE . 2MAEM, —RFEE. THRVER. BAaNgE
B, XBEREERMNOESE TREMRIE. BETELR 258
AL AR XM R BT T EMBM R LR MR, &FFHE
HREILBM B TR A& P A - F B, B ERER
ERE, MRBOBELERBRITER X — LR BRHEERY), 1
B o E MmN S R TR BB IURA FIRIE, &AM

£EWM Y. www.hzbook.com

8 FHhf#4. hzedu@hzbook.com
EXZHiE. (010) 68995264

BRI AR TFEHRETT EdHLS
HRIB 45 %5 . 100037 ESHBEBHERT S

PREFACE

Welcome to Foundations of Software Testing! This-book intends to offer exactly what its title
implies. It is important that students planning a career in information technology take a
course in software testing. It is also important that such a course offer students an opportu-
nity to acquire material that will remain useful throughout their careers in a variety of soft-
ware applications, products, and changing environments. This book is an introduction to
exactly such material and hence an appropriate text for a course in software testing. It distills
knowledge developed by hundreds of testing researchers and practitioners from all over the
world and brings it to its readers in an easy-to-understand form.

Test generation, selection, prioritization, and assessment lie at the foundation of all tech-
nical activities involved in software testing. Appropriate deployment of the elements of this
strong foundation enables the testing of different types of software applications as well as
testing for various properties. Applications include Object Oriented systems, Web services,
graphical user interfaces, embedded systems, and others, and properties relate to security,
timing, performance, reliability, and others.

The importance of software testing increases as software pervades more and more
into our daily lives. Unfortunately, few universities offer full-fledged courses in software
testing and those that do often struggle to identify a suitable text. I hope that this book
will allow academic institutions to create courses in software testing, and those that
already offer such courses will not need to hunt for a textbook or rely solely on research
publications.

Conversations with testers and managers in commercial software development environ-
ments have led me to believe that though software testing is considered an important activity,
software testers often complain of not receiving treatment at par with system designers and
developers. I believe that raising the level of sophistication in the material covered in courses
in software testing will lead to superior testing practices, high-quality software, and thus
translate into positive impact on the career of software testers. I hope that exposure to even
one-half of the material in this book will establish a student’s respect for software testing as
a discipline in its own right and at the same level of maturity as subjects such as compilers,
databases, algorithms, and networks.

Target audience: It is natural to ask: What is the target level of this book? My experience,
and that of some instructors who have used earlier drafts, indicates that this book is best suited
for use at senior undergraduate and early graduate levels. While the presentation in this book
is aimed at students in a college or university classroom, I believe that both practitioners and
researchers will find it useful. Practitioners, with patience, may find this book as a rich source
of techniques they could learn and adapt in their development and test environment.
Researchers are likely to find it to be a rich source of reference material.

vi PREFACE

Nature of material covered: Software testing covers a wide spectrum of activities. At a
higher level, such activities appear to be similar whereas at a lower level they might differ sig-
nificantly. For example, most software development environments engage in test execution.
However, test execution for an operating system is carried out quite differently than that for
a pacemaker; while one is an open system, the other is embedded and hence the need for dif-
ferent ways to execute tests.

The simultaneous existence of similarities and differences in each software testing
activity leads to a dilemma for an author as well as an instructor. Should a book and a
course focus on specific software development environments, and how they carry out var-
ious testing activities? Or should they focus on specific testing activities without any
detailed recourse to specific environments? Either strategy is subject to criticism and leaves
the students in a vacuum regarding the applications of testing activities or about their
formal foundations.

I have resolved this dilemma through careful selection and organization of the material.
Parts I, 11, and I1I of this book focus primarily on the foundations of various testing activities.
Part I illustrate through examples the differences in software test processes as applied in var-
ious software development organizations. Techniques for generating tests from models of
expected program behavior are covered in Part II, while the measurement of the adequacy of
the tests so generated, and their enhancement, is considered in Part I1I.

Organization: This book is organized into three parts. Part I covers terminology and
preliminary concepts related to software testing. Chapter 1, the only chapter in this part,
introduces a variety of terms and basic concepts that pervade the field of software testing.
Some adopters of earlier drafts of this book have covered the introductory material in this
chapter during the first two or three weeks of an undergraduate course.

Part II covers various test-generation techniques. Chapter 2 introduces the most basic of
all test-generation techniques widely applicable in almost any software application one can
imagine. These include equivalence partitioning, boundary-value analysis, cause-effect
graphing, and predicate testing. Chapter 3 introduces powerful and fundamental techniques
for automatically generating tests from finite state models. Three techniques have been
selected for presentation in this chapter: W-, Wp-, and Unique Input-Output methods. Finite
state models are used in a variety of applications such as in OO testing, security testing, and
GUI testing. Generation of combinatorial designs and tests is the topic of Chapter 4.
Regression testing forms an integral part of all software development environments where
software evolves into newer versions and thus undergoes extensive maintenance. Chapter 5
introduces some fundamental techniques for test selection, prioritization, and minimization
of use during regression testing.

Part I1I is an extensive coverage of an important and widely applicable topic in software
testing: test enhancement through measurement of test adequacy. Chapter 6 introduces a vari-
ety of control-flow- and data-flow-based code coverage criteria and explains how these could
be used in practice. The most powerful of test adequacy criteria based on program mutation
are introduced in Chapter 7. While some form of test adequacy assessment is used in almost
every software development organization, material covered in these chapters promises to take
adequacy assessment and test enhancement to a new level, thereby making a significant
positive impact on software reliability.

PREFACE vii

Practitioners often complain, and are mostly right, that many white-box adequacy crite-
ria are impractical to use during integration and system testing. I have included a discussion
on how some of the most powerful adequacy assessment criteria can be, and should be, used
even beyond unit testing. Certainly, my suggestions to do so assume the avallablhty of com-
mercial-strength tools for adequacy assessment.

Each chapter ends with a detailed bibliography. I have tried to be as comprehensive as
possible in citing works related to the contents of each chapter. I hope that instructors and
students will find, the Bibliographic Notes sections rich and helpful in enhancing their
knowledge beyond this book. Citations are also a testimony to the rich literature in the field
of software testing.

What does this book not cover?: Software testing consists of a large number of related
and intertwined activities. Some of these are technical, some administrative, and some merely
routine. Technical activities include test case and oracle design at the unit, subsystem, inte-
gration, system, and regression levels. Administrative activities include manpower planning,
budgeting, and reporting. Planning activities include test planning, quality assessment and
control, and manpower allocation. While some planning activities are best classified as
administrative, for example manpower allocation, others such as test planning are intertwined
with technical activities like test case design.

Several test-related activities are product specific. For example, testing of a device driver
often includes tasks such as writing a device simulator. Simulators include heart simulator in
testing cardiac pacemakers, a USB port simulator useful in testing I/O drivers, and an airborne
drone simulator used in testing control software for airborne drones. While such activities are
extremely important for effective testing and test automation, they often require a significant
development effort. For example, writing a device simulator and testing it is both a develop-
ment and a testing activity. Test-generation and assessment techniques described in this book
are applicable to each of the product-specific test activity. However, product-specific test
activities are illustrated in this book only through examples and not described in any detail.
My experience has been that it is best for students to learn about such activities through
industry-sponsored term projects.

Suggestions to instructors: There is a wide variation in the coverage of topics in courses
in software testing I have tried to cover most, if not all, of the important topics in this area.
Tables 1 and 2 provide suggested outline of undergraduate and graduate courses, respectively,
that could be based entirely on this book.

Sample undergraduate course in software testing: We assume a semester-long under-
graduate course worth 3-credits that meets twice a week, each meeting lasts 50 min and
devotes a total of 17 weeks to lectures, examinations, and project presentations. The course
has a 2-h per week informal laboratory and requires students to work in small teams of three
or four to complete a term project. The term project results in a final report and possibly a
prototype testing tool. Once every 2 weeks, students are given one laboratory exercise that
takes about 46 h to complete.

Table 3 contains a suggested evaluation plan. Carefully designed laboratory exercises form
an essential component of this course. Each exercise offers the students an opportunity to use
a testing tool to accomplish a task. For example, the objective of a laboratory exercise could
be to familiarize the students with JUnit as test runner or JMeter as a tool for the performance

viii PREFACE

Tablel A sample undergmduatc course in software testmg

Week ¢ W R R e Oy e
1 Course objectives and goals, project assignment,
testing terminology, and concepts 1
Test process and management 1
Errors, faults, and failures 1
Boundary-value analysis, equivalence
partitioning, decision tables 2
5,6 Test generation from predicates 2
7 Interim project presentations
Review, midterm examination
8 Test adequacy: control flow 6
9 Test adequacy: data flow 6
10, 11 Test adequacy: program mutation 7
12,13, 14 Special topics, e.g. OO testing and, security testing Separate volume
15, 16 Review, final project presentations
17 Final examination

Table2 A sample graduate course in soﬁware testmg

Week ~ Topic’ Chapter ©
1 Course objectives and goals, testing
terminology and concepts 1
2 Test process and management Separate volume
Errors, faults, and failures Separate volume
3 Boundary-value analysis, equivalence
partitioning, decision tables 2
4 Test generation from predicates 2
5,6 Test generation from finite-state models 3
7,8 Combinatorial designs 4
Review, midterm examination
9 Test adequacy: control flow 6
10 Test adequacy: data flow 6
11, 12 Test adequacy: program mutation
13, 14 Special topics, e.g. real-time testing and ,
security testing Separate volume
15,16 Review, research presentations
17 Final examination

PREFACE ix

Table 3 Suggested evaluation components of the undergraduate and graduate courses
in software testing

Level Component Weight Duration
Undergraduate Midterm examination 15 points 90 min
Final examination 25 points 120 min
Quizzes 10 points Short duration
Laboratory assignments 10 points 10 assignments
Term project 40 points Semester
Graduate Midterm examination 20 points 90 min
Final examination 30 points 120 min
Laboratory assignments 10 points 5 assignments
Research/Term project 40 points Semester
Table 4 A sample set of tools to select from for use in undergraduate and
graduate courses in software testing
Purpose Tool Source
Combinatorial designs AETG
Code coverage measurement TestManager™ JUnit CodeTest Suds
Defect tracking Bugzilla FogBugz GUI testing WebCoder ~ JfcUnit Mutation testing
mulava
Proteum
Performance testing Performance Tester JMeter Regression testing
Eggplant Suds Test
management ClearQuest™
TestManager
Telcordia Technologies IBM Telcordia Technologies Professor Jeff Offut
Rational Freeware Freeware Fog Creek offutt@jise.gmu.edu
Freescale Semiconductor Software Crimson
Solutions Freeware
Professor Jose Maldonado IBM Rational™ IBM Rational™
jemaldon@icmc.usp.br Apache, for Java BM Rational™
Redstone Software

Telcordia Technologies

measurement of Web services. Instructors should be able to design laboratory exercises
based on topics covered during the previous weeks. A large number of commercial and
open-source-testing tools are available for use in a software-testing laboratory.

Sample graduate course in software testing: We assume a semester-long course worth
3-credits. The students entering this course have not had any prior course in software testing,
such as the undergraduate course described above. In addition to the examinations, students

X PREFACE

will be required to read and present recent research material. Students are exposed to testing
tools via unscheduled laboratory exercises.

Testing tools: There is a large set of testing tools available in the commercial, freeware,
and open-source domains. A small sample of such tools is listed in Table 4.

Evolutionary book: I expect this book to evolve over time. Advances in topics covered
in this book, and any new topics that develop, will be included in subsequent editions. Any
errors found by me and/or reported by the readers will be corrected. Readers are encouraged
to visit the following site for latest information about the book.

www.pearsoned.co.in/adityapmathur

While this book covers significant material in software testing, several advanced topics
could not be included to limit its size. I am planning a separate volume of the book to take
care of the advanced topics on the subject and can be used by students who would like to
know much more about software testing as well as professionals in the industry.

Cash awards: In the past, I have given cash rewards to students who carefully read the
material and reported any kind of error. I plan to retain the cash-reward approach as a means
for continuous quality improvement.

Aditya P. Mathur

ACKNOWLEDGMENTS

A number of people have been of significant assistance in the writing of this book. I apologize
to those whose names do not appear here but should have; the omission is purely accidental.

I thank Rich DeMillo for introducing me to the subject of software testing and support-
ing my early research. Rich pointed me to the literature that helped with the acquisition of
knowledge and of appreciation for software testing. I am grateful to Bob Horgan who influ-
enced and supported my thinking of the relationship between testing and reliability and the
importance of code coverage. Bob freely shared the early and later versions of the ySuds
toolset. I continue to believe that xSuds is so far the best toolset available for test-adequacy
assessment and enhancement. My sincere thanks are also to Ronnie Martin for spending end-
less hours meticulously reviewing many of my technical reports.

I thank Donald Knuth warmly for sharing details of the errors of TEX and to his staff for
sharing with me the earlier versions of TEX. Thanks to Hiralal Agrawal for patiently answer-
ing questions related to dynamic slicing. Thanks to Farokh Bastani, Fevzi Belli, Jim Berger,
Kai-Yuan Cai, Ram Chillarege, Sid Dalal, Raymond DeCarlo, Marcio Delamaro, Phyllis
Frankl, Arif Ghafoor, Amrit Goel, Dick Hamlet, Mats Heimdahl, Michael A. Hennell, Bill
Howden, Ashish Jain, Pankaj Jalote, Rick Karcick, Bogdan Korel, Richard Lipton, Yashwant
Malaiya, Jose Maldonado, Simanta Mitra, John Musa, Jeff Offutt, Tom Ostrand, Amit
Paradkar, Alberto Pasquini, Ray Paul, C. V. Ramamoorthy, Vernon Rego, Nozer Singpurwalla,
Mary-Lou Soffa, Rajesh Subramanian, Kishor Trivedi, Jefferey Voas, Mladen Vouk, Elaine
Weyuker, Lee White, and Martin Woodward for discussions and offering constructive
criticisms that led to the thrashing of many of my incorrect, often silly, notions about
software testing and reliability (and often about life too).

I thank Jim Mapel, Marc Loos, and several other engineers at Boston Scientific Inc. (for-
merly Guidant Corporation) for introducing me to the sophisticated test processes for ensur-
ing highly reliable cardiac devices. Thanks to Klaus Diaconu, Mario Garzia, Abdelsalam
Heddaya, Jawad Khaki, Nar Ganapathy, Adam Shapiro, Peter Shier, Robin Smith, Amitabh
Srivastava, and the many software engineers at Microsoft in the Windows Reliability and
Device Driver teams for helping me understand the complex and sophisticated test processes
and tools used at Microsoft to assure the delivery of a highly reliable operating system to
millions of people around the globe.

I acknowledge the efforts of anonymous reviewers for reviewing and providing useful
comments. [thank Muhammad Naeem Ayyaz, Abdeslam En-Nouaary, Joao Cangussu, and
Eric Wong for editing earlier drafts of this book, and some of the associated presentations,
used in undergraduate and graduate courses. Feedback from instructors and students in their
classes proved invaluable.

xii ACKNOWLEDGMENTS

Many thanks to Emine Gokce Aydal, Christine Ayers, Jordan Fleming, Nwokedi Idika,
K. Jayaram, Yuanlu Jiang, Ashish Kundu, Yu Lei, Jung-Chi Lin, Shuo Lu, Ammar Masood,
Kevin McCarthy, Roman Joel Pacheco, Tu Peng, Van Phan, James Roberts, Chetak Sirsat,
Kevin Smith, Travis Steel, Yunlin Xu, I1-Chul Yoon, Hiroshi Yamauchi, and Brandon
Wauest for reporting and correcting errors after careful reading of various chapters of
earlier drafts. :

The cooperation of David Boardman, Jodo Cangussu, Mei-Hwa Chen, Byoungju Choi,
Praerit Garg, Sudipto Ghosh, Neelam Gupta, Vivek Khandelwal, Edward Krauser, Saileshwar
Krishnamurthy, Tsanchi Li, Pietro Michielan, Scott Miller, Manuela Schiona, Baskar
Sridharan, and Brandon Wuest for working with me patiently in software testing research can-
not be overlooked.

I thank Professor T. S. K. V. Iyer for constantly asking me whether the book is complete and
thus being a major driving force behind the completion of this book. My sincere thanks to
Raymond Miller, Nancy Griffith, Bill Griffith, and Pranas Zunde for their years of support and
the welcome I received when I arrived in a new country. Thanks to John Rice and Elias Houstis
for their support in terms of facilities and equipment essential for experimentation and for being
wonderful colleagues. I thank Susanne Hambrusch and Ahmed Sameh for supporting me in the
development of software engineering and software testing courses at Purdue. I thank members
of the facilities staff of the Computer Science Department for assistance with setting up labo-
ratory equipment and software used by students in graduate and undergraduate course offerings
at Purdue University. Thanks to Patricia Minniear for working hard to make timely copies of
drafts of this book for the use of students.

My sincere thanks to Professors S. Venkateswaran and L. K. Maheshwari and the faculty
and staff of the Computer Science Department at BITS, Pilani, for offering me a friendly
work environment during my sabbatical year. I thank my dear friend Mohan Lal and his
family for their support over many years, and especially during my visit to Pilani where I
wrote some portions of this book. I thank all the employees of the BITS Guest House
(VFAST) whose generosity and love must have had some positive effect on the quality of this
book.

The contribution of Hanna Lena Kovenock who spent countless hours iterating over the
cover cartoon of early drafts of this book depicting the “chair development” team in the ani-
mal kingdom. Hanna is a great artist and I was fortunate to get her assistance.

I am indebted to my friends Ranjit Gulrajani and Pundi Narasimhan and their families for
emotional support over many years. [would like to thank my parents, Amma, and my other
family members whose unflinching love and support was essential for the completion of this
project. | must thank my wonderful children Gitanjali and Ravishankar, and son-in-law
Abhishek Gangwal, for asking “When will the book be in print?” I thank my collies Raja and
Shaan, from whom I took away precious playtime. And last but not the least, my heartiest
thanks to my wife Jyoti Iyer Mathur for her constant love and support.

Aditya P. Mathur

Contents

Preface v
Acknowledgments Xi

PAAT I: PREUMINARIES

1. Basics of SoFrwAne TesTNG

1.1. HUMANS, ERRORS, AND TESTING

1.1.1. Errors, faults, and failures

1.1.2. Test automation

1.1.3. Developer and fesler as two roles

1.2. SOFTWARE QUALITY
1.2.1. Quality attributes
1.2.2. Reliability

1.3. REQUIREMENTS, BEHAVIOR, AND CORRECTNESS
1.3.1. Input domain and program correctness
1.3.2. Valid and invalid inputs

1.4. CORRECTNESS VERSUS RELIABILITY

1.4.1. Correctness

1.4.2. Reliability

1.4.3. Program use and the operational profile

1.5. TESTING AND DEBUGGING

1.5.1. Preparing a test plan

1.5.2. Constructing test data

1.5.3. Executing the program

1.5.4. Specifying program behavior

1.5.5. Assessing the correctness of
program behavior

1.5.6. Construction of oracles

® ® Ny N ;e W

1.6. TEST METRICS

1.6.1. Organizational metrics

1.6.2. Project metrics

1.6.3. Process metrics

1.6.4. Product metrics: Generic

1.6.5. Product metrics: OO software
1.6.6. Progress monitoring and trends
1.6.7. Static and dynamic metrics
1.6.8. Testability

1.7. SOFTWARE AND HARDWARE TESTING
1.8. TESTING AND VERIFICATION

1.9. DEFECT MANAGEMENT

1.10. EXECUTION HISTORY

1.11. TEST-GENERATION STRATEGIES

1.12. STATIC TESTING
1.12.1. Walkthroughs
1.12.2. Inspections

1.12.3. Use of static code analysis tools in

static testing
1.12.4. Software complexity and
static testing

1.13. MODEL-BASED TESTING AND
MODEL CHECKING

1.14. CONTROL-FLOW GRAPH

1.14.1. Basic block

1.14.2. Flow graph: Definition and
pictorial representation

1.14.3. Path

1.15. DOMINATORS AND POSTDOMINATORS

Xiv CONTENTS

1.16. PROGRAM-DEPENDENCE GRAPH

1.16.1. Data dependence

1.16.2. Control dependence

1.17. STRINGS, LANGUAGES, AND
REGULAR EXPRESSIONS

1.18. TYPES OF TESTING

1.18.1. Classifier C1: Source of test
generation

1.18.2. Classifier C2: Life cycle phase
1.18.3. Classifier C3: Goal-directed testing
1.18.4. Classifier C4: Artifact under test
1.18.5. Classifier C5: Test process models

1.19. THE SATURATION EFFECT
1.19.1..Confidence and true reliability
1.19.2. Saluration region

1.19.3. Faise sense of confidence
1.19.4. Reducing A

1.19.5. Impact on test process
Summary

Bibliographic Notes

Exercises

PAAT II: TEST GENERATION

9. TesT GENERATION FAOM
REQUIREMENTS

2.1. INTRODUCTION
2.2. THE TEST-SELECTION PROBLEM

2.3. EQUIVALENCE PARTITIONING

2.3.1. Faults targeted

2.3.2. Relations and equivalence partitioning
2.3.3. Equivalence classes for variables

2.3.4. Unidimensional versus
muttidimensional partitioning

2.3.5. A systematic procedure for
equivalence partitioning

2.3.6. Test selection based on
equivalence classes

2.3.7. GUI design and equivalence classes
2.4. BOUNDARY-VALUE ANALYSIS

2.5. CATEGORY-PARTITION METHOD
2.5.1 Steps in the category-partition method

%88

I 8RR

74
75
76
76
77
78

&8I

89

102

108

114
17

119

125
125

2.8. CAUSE—EFFECT GRAPHING

2.6.1. Notation used in cause—effect graphing

2.6.2. Creating cause—effect graphs

2.6.3. Decision table from cause—effect graph

2.6.4. Heuristics to avoid combinatorial
explosion

2.6.5. Test generation from a decision table

2.7. TEST GENERATION FROM PREDICATES
2.7.1. Predicates and boolean expressions
2.7.2. Fault model for predicate testing
2.7.3. Predicate constraints

2.7.4. Predicate-testing criteria

2.7.5. Generating BOR-. BRO-, and
BRE-adequate tests

2.7.6. Cause—sffect graphs and predicate
testing

2.7.7. Fault propagation

2.7.8. Predicate testing in practice
Summary

Bibliographic Notes

Exercises

3. Test GENERATION FROM
FiNe-StATe MODELS

3.1. SOFTWARE DESIGN AND TESTING

3.2. FINITE-STATE MACHINES

3.2.1. Excitation using an input sequence
3.2.2. Tabular representation

3.2.3. Properties of FSM

3.3. CONFORMANCE TESTING
3.3.1. Reset inputs
3.3.2. The testing problem

3.4. A FAULT MODEL
3.4.1. Mutants of FSMs
3.4.2. Fault coverage

3.5. CHARACTERIZATION SET

3.5.1. Construction of the k-equivalence
partitions

3.5.2. Deriving the characterization set
3.5.3. Identification sets
3.6. THE W-METHOD

3.6.1. Assumptions
3.6.2. Maximum number of states

133
136
140

145
148

149
150
152
154
156

158

173
174
176
180
181
184

193

21
213

214

215
218
221
221

222
ez22

3.6.3. Computation of the transition cover sel 223

3.6.4. Constructing 2

3.6.5. Deriving a test set

3.6.6. Testing using the W-method
3.6.7. The error-delection process

3.7. THE PARTIAL W-METHOD
3.7.1. Testing using the Wp-method
form=n

3.7.2. Testing using the Wp-method
form>n

3.8. Tre UIO-SEQUENCE METHOD

3.8.1. Assumptions

3.8.2. VIO sequences

3.8.3. Core and noncore behavior

3.8.4. Generation of UIO sequences

3.8.5. Distinguishing signatures

3.8.6. Test generation

3.8.7. Test optimization

3.8.8. Fault detection

3.9. AUTOMATA THEORETIC VERSUS
CONTROL-FLOW-BASED TECHNIQUES

3.9.1. n-switch-cover

3.9.2. Comparing automata-theoretic
methods

Summary
Bibliographic Notes
Exercises

4. Test GeNeARTION FAOM
ComanAToRAL DesiGns

4.1. COMBINATORIAL DESIGNS

4.1.1. Test configuration and ltest set

4.1.2. Modeling the input and
configuration spaces

4.2. A COMBINATORIAL TEST-DESIGN PROCESS

4.3. FAULT MODEL
4.3.1. Fault vectors

4.4, LATIN SQUARES
4.5. MUTUALLY ORTHOGONAL LATIN SQUARES
4.6. PAIRWISE DESIGN: BINARY FACTORS

4.7. PAIRWISE DESIGN: MULTIVALUED FACTORS

4.7.1. Shortcomings of using MOLS
for test design

224
225

237
239
241
253
256
258
259

265

267

270

279

281

281

T RBYY

4.8. ORTHOGONAL ARRAYS

4.8.1. Mixed-level orthogonal arrays

4.9. COVERING AND MIXED-LEVEL
COVERING ARRAYS

4.9.1. Covering arrays

4.9.2. Mixed-level covering arrays

4.10. ARRAYS OF STRENGTH >2

4.11. GENERATING COVERING ARRAYS
Summary

Bibliographic Notes

Exercises

5. Test SeLecnon, MINIMZATIONS, AND
PRIARITIZATION FOR REGRESSION
Testing

5.1. WHAT IS REGRESSION TESTING?

5.2. REGRESSION-TEST PROCESS

5.2.1. Test revalidation. seleclion,
minimization, and prioritization

5.2.2. Test setup

5.2.3. Test sequencing
5.2.4. Test execution
5.2.5. Oulput comparison

5.3. RTS: THE PROBLEM

5.4. SELECTING REGRESSION TESTS
5.4.1. Test all
5.4.2. Random selection

5.4.3. Selecting modification-traversing tests

5.4.4. Test minimization
5.4.5. Test prioritization

5.5. TEST SELECTION USING EXECUTION TRACE
5.5:1. Obtaining the execution trace

5.5.2. Selecting regression tests

5.5.3. Handling function calls

5.5.4. Handling changes in declarations

5.6. TEST SELECTION USING DYNAMIC SLICING
5.6.1. Dynamic slicing

5.6.2. Computation of dynamic slices
5.6.3. Selecting tests

5.6.4. Potential dependence

5.6.5. Computing the relevant slice

5.6.6. Addition and deletion of statements

XV

31

314
314
314

315

316
326
327

335

g 8

sE 8 ERBEER

345
345

347
347

350

355
355

360

362
363

367

xvi CONTENTS

5.6.7. Identifying variables for slicing

5.6.8. Reduced dynamic-dependence graph

5.7. SCALABILITY OF TEST-SELECTION
ALGORITHMS

5.8. TEST MINIMIZATION

5.8.1. The set-cover problem

5.8.2. A procedure for test minimization

5.9. TEST PRIORITIZATION

5.10. TOOLS FOR REGRESSION TESTING
Summary

Bibliographic Notes

Exercises

PAAT Ill: TEST ADEQUACY
ASSESSMENT AND
ENHANCEMENT

6. TesT ADEQUACY: ASSESSMENT USING
ContROL FLOW AND DATA FLOW

6.1. TEST ADEQUACY: BASICS
6.1.1. What is test adequacy?
6.1.2. Measurement of test adequacy

6.1.3. Test enhancement using
measurements of adequacy

6.1.4. Infeasibility and test adequacy

6.1.5. Error detection and test enhancement

6.1.6. Single and multiple executions

6.2. ADEQUACY CRITER!A BASED ON
CONTROL FLOW

6.2.1. Statement and block coverage

6.2.2. Conditions and decisions

6.2.3. Decision coverage

6.2.4. Condition coverage

6.2.5. Condition/decision coverage

6.2.6. Multiple condition coverage

6.2.7. Linear code sequence and jump
(LCSAJ) coverage

6.2:8. Modified condition/decision coverage

6.2.9. MC/DC-adequate tests for
compound condifions

6.2.10. Definition of MC/DC coverage
6.2.11. Minimal MC/DC tests

369
369

an

373
374
375
an
381
384
385
391

399

401

402
402
403

405
409
411
414

415
415
418
420
422
424
426

429
433

434
440
448

6.2.12. Error detection and MC/DC adequacy
6.2.13. Short-circuit evaluation and
infeasibility
6.2.14. Tracing test cases to requirements
6.3. DATA-FLOW CONCEPTS
6.3.1. Definitions and uses
6.3.2. c-use and p-use
6.3.3. Global and local definitions and uses
6.3.4. Data-flow graph
6.3.5. Def—clear paths
6.3.6. Def-use pairs
6.3.7. Def-use chains
6.3.8. A little optimization
6.3.9. Data contexts and ordered
data contexts
6.4. ADEQUACY CRITERIA BASED ON DATA FLOW
6.4.1. c-use coverage
6.4.2. p-use coverage
6.4.3. all-uses coverage
6.4.4. k—dr chain coverage
6.4.5. Using the k—dr chain coverage
6.4.6. Infeasible c-uses and p-uses
6.4.7. Context coverage

6.5. CONTROL FLOW VERSUS DATA FLOW
6.6. THE SUBSUMES RELATION
6.7. STRUCTURAL AND FUNCTIONAL TESTING

6.8. SCALABILITY OF COVERAGE MEASUREMENT
Summary

Bibliographic Notes

Exercises

7. TesT-ADEQUACY ASSESSMENT USING
ProGRAM MUTATION

7.1. INTRODUCTION

7.2. MUTATION AND MUTANTS

7.2.1. First-order and higher-order mutants
7.2.2. Syntax and semantics of mutants
7.2.3. Strong and weak mutations

7.2.4. Why mutate?

7.3. TEST ASSESSMENT USING MUTATION

7.3.1. A procedure for lest-adequacy
assessment

448

450
452

455
456
457
458
460
461
462
463

464

467
468
469
471
471
473
474
475

&848R 83

494

