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PREFACE

Welcome to Foundations of Software Testing! This-book intends to offer exactly what its title
implies. It is important that students planning a career in information technology take a
course in software testing. It is also important that such a course offer students an opportu-
nity to acquire material that will remain useful throughout their careers in a variety of soft-
ware applications, products, and changing environments. This book is an introduction to
exactly such material and hence an appropriate text for a course in software testing. It distills
knowledge developed by hundreds of testing researchers and practitioners from all over the
world and brings it to its readers in an easy-to-understand form.

Test generation, selection, prioritization, and assessment lie at the foundation of all tech-
nical activities involved in software testing. Appropriate deployment of the elements of this
strong foundation enables the testing of different types of software applications as well as
testing for various properties. Applications include Object Oriented systems, Web services,
graphical user interfaces, embedded systems, and others, and properties relate to security,
timing, performance, reliability, and others.

The importance of software testing increases as software pervades more and more
into our daily lives. Unfortunately, few universities offer full-fledged courses in software
testing and those that do often struggle to identify a suitable text. I hope that this book
will allow academic institutions to create courses in software testing, and those that
already offer such courses will not need to hunt for a textbook or rely solely on research
publications.

Conversations with testers and managers in commercial software development environ-
ments have led me to believe that though software testing is considered an important activity,
software testers often complain of not receiving treatment at par with system designers and
developers. I believe that raising the level of sophistication in the material covered in courses
in software testing will lead to superior testing practices, high-quality software, and thus
translate into positive impact on the career of software testers. I hope that exposure to even
one-half of the material in this book will establish a student’s respect for software testing as
a discipline in its own right and at the same level of maturity as subjects such as compilers,
databases, algorithms, and networks.

Target audience: It is natural to ask: What is the target level of this book? My experience,
and that of some instructors who have used earlier drafts, indicates that this book is best suited
for use at senior undergraduate and early graduate levels. While the presentation in this book
is aimed at students in a college or university classroom, I believe that both practitioners and
researchers will find it useful. Practitioners, with patience, may find this book as a rich source
of techniques they could learn and adapt in their development and test environment.
Researchers are likely to find it to be a rich source of reference material.
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Nature of material covered: Software testing covers a wide spectrum of activities. At a
higher level, such activities appear to be similar whereas at a lower level they might differ sig-
nificantly. For example, most software development environments engage in test execution.
However, test execution for an operating system is carried out quite differently than that for
a pacemaker; while one is an open system, the other is embedded and hence the need for dif-
ferent ways to execute tests.

The simultaneous existence of similarities and differences in each software testing
activity leads to a dilemma for an author as well as an instructor. Should a book and a
course focus on specific software development environments, and how they carry out var-
ious testing activities? Or should they focus on specific testing activities without any
detailed recourse to specific environments? Either strategy is subject to criticism and leaves
the students in a vacuum regarding the applications of testing activities or about their
formal foundations.

I have resolved this dilemma through careful selection and organization of the material.
Parts I, 11, and I1I of this book focus primarily on the foundations of various testing activities.
Part I illustrate through examples the differences in software test processes as applied in var-
ious software development organizations. Techniques for generating tests from models of
expected program behavior are covered in Part II, while the measurement of the adequacy of
the tests so generated, and their enhancement, is considered in Part I1I.

Organization: This book is organized into three parts. Part I covers terminology and
preliminary concepts related to software testing. Chapter 1, the only chapter in this part,
introduces a variety of terms and basic concepts that pervade the field of software testing.
Some adopters of earlier drafts of this book have covered the introductory material in this
chapter during the first two or three weeks of an undergraduate course.

Part II covers various test-generation techniques. Chapter 2 introduces the most basic of
all test-generation techniques widely applicable in almost any software application one can
imagine. These include equivalence partitioning, boundary-value analysis, cause-effect
graphing, and predicate testing. Chapter 3 introduces powerful and fundamental techniques
for automatically generating tests from finite state models. Three techniques have been
selected for presentation in this chapter: W-, Wp-, and Unique Input-Output methods. Finite
state models are used in a variety of applications such as in OO testing, security testing, and
GUI testing. Generation of combinatorial designs and tests is the topic of Chapter 4.
Regression testing forms an integral part of all software development environments where
software evolves into newer versions and thus undergoes extensive maintenance. Chapter 5
introduces some fundamental techniques for test selection, prioritization, and minimization
of use during regression testing.

Part I1I is an extensive coverage of an important and widely applicable topic in software
testing: test enhancement through measurement of test adequacy. Chapter 6 introduces a vari-
ety of control-flow- and data-flow-based code coverage criteria and explains how these could
be used in practice. The most powerful of test adequacy criteria based on program mutation
are introduced in Chapter 7. While some form of test adequacy assessment is used in almost
every software development organization, material covered in these chapters promises to take
adequacy assessment and test enhancement to a new level, thereby making a significant
positive impact on software reliability.
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Practitioners often complain, and are mostly right, that many white-box adequacy crite-
ria are impractical to use during integration and system testing. I have included a discussion
on how some of the most powerful adequacy assessment criteria can be, and should be, used
even beyond unit testing. Certainly, my suggestions to do so assume the avallablhty of com-
mercial-strength tools for adequacy assessment.

Each chapter ends with a detailed bibliography. I have tried to be as comprehensive as
possible in citing works related to the contents of each chapter. I hope that instructors and
students will find, the Bibliographic Notes sections rich and helpful in enhancing their
knowledge beyond this book. Citations are also a testimony to the rich literature in the field
of software testing.

What does this book not cover?: Software testing consists of a large number of related
and intertwined activities. Some of these are technical, some administrative, and some merely
routine. Technical activities include test case and oracle design at the unit, subsystem, inte-
gration, system, and regression levels. Administrative activities include manpower planning,
budgeting, and reporting. Planning activities include test planning, quality assessment and
control, and manpower allocation. While some planning activities are best classified as
administrative, for example manpower allocation, others such as test planning are intertwined
with technical activities like test case design.

Several test-related activities are product specific. For example, testing of a device driver
often includes tasks such as writing a device simulator. Simulators include heart simulator in
testing cardiac pacemakers, a USB port simulator useful in testing I/O drivers, and an airborne
drone simulator used in testing control software for airborne drones. While such activities are
extremely important for effective testing and test automation, they often require a significant
development effort. For example, writing a device simulator and testing it is both a develop-
ment and a testing activity. Test-generation and assessment techniques described in this book
are applicable to each of the product-specific test activity. However, product-specific test
activities are illustrated in this book only through examples and not described in any detail.
My experience has been that it is best for students to learn about such activities through
industry-sponsored term projects.

Suggestions to instructors: There is a wide variation in the coverage of topics in courses
in software testing I have tried to cover most, if not all, of the important topics in this area.
Tables 1 and 2 provide suggested outline of undergraduate and graduate courses, respectively,
that could be based entirely on this book.

Sample undergraduate course in software testing: We assume a semester-long under-
graduate course worth 3-credits that meets twice a week, each meeting lasts 50 min and
devotes a total of 17 weeks to lectures, examinations, and project presentations. The course
has a 2-h per week informal laboratory and requires students to work in small teams of three
or four to complete a term project. The term project results in a final report and possibly a
prototype testing tool. Once every 2 weeks, students are given one laboratory exercise that
takes about 46 h to complete.

Table 3 contains a suggested evaluation plan. Carefully designed laboratory exercises form
an essential component of this course. Each exercise offers the students an opportunity to use
a testing tool to accomplish a task. For example, the objective of a laboratory exercise could
be to familiarize the students with JUnit as test runner or JMeter as a tool for the performance
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Tablel A sample undergmduatc course in software testmg

Week ¢ W R R e Oy e
1 Course objectives and goals, project assignment,
testing terminology, and concepts 1
Test process and management 1
Errors, faults, and failures 1
Boundary-value analysis, equivalence
partitioning, decision tables 2
5,6 Test generation from predicates 2
7 Interim project presentations
Review, midterm examination
8 Test adequacy: control flow 6
9 Test adequacy: data flow 6
10, 11 Test adequacy: program mutation 7
12,13, 14 Special topics, e.g. OO testing and, security testing Separate volume
15, 16 Review, final project presentations
17 Final examination

Table2 A sample graduate course in soﬁware testmg

Week ~ Topic’ Chapter ©
1 Course objectives and goals, testing
terminology and concepts 1
2 Test process and management Separate volume
Errors, faults, and failures Separate volume
3 Boundary-value analysis, equivalence
partitioning, decision tables 2
4 Test generation from predicates 2
5,6 Test generation from finite-state models 3
7,8 Combinatorial designs 4
Review, midterm examination
9 Test adequacy: control flow 6
10 Test adequacy: data flow 6
11, 12 Test adequacy: program mutation
13, 14 Special topics, e.g. real-time testing and ,
security testing Separate volume
15,16 Review, research presentations
17 Final examination
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Table 3  Suggested evaluation components of the undergraduate and graduate courses
in software testing

Level Component Weight Duration
Undergraduate Midterm examination 15 points 90 min
Final examination 25 points 120 min
Quizzes 10 points Short duration
Laboratory assignments 10 points 10 assignments
Term project 40 points Semester
Graduate Midterm examination 20 points 90 min
Final examination 30 points 120 min
Laboratory assignments 10 points 5 assignments
Research/Term project 40 points Semester
Table 4 A sample set of tools to select from for use in undergraduate and
graduate courses in software testing
Purpose Tool Source
Combinatorial designs AETG
Code coverage measurement TestManager™ JUnit CodeTest Suds
Defect tracking Bugzilla FogBugz GUI testing WebCoder ~ JfcUnit Mutation testing
mulava
Proteum
Performance testing Performance Tester JMeter Regression testing
Eggplant Suds Test
management ClearQuest™
TestManager
Telcordia Technologies IBM Telcordia Technologies  Professor Jeff Offut
Rational Freeware Freeware Fog Creek offutt@jise.gmu.edu
Freescale Semiconductor Software Crimson
Solutions Freeware
Professor Jose Maldonado IBM Rational™ IBM Rational™
jemaldon@icmc.usp.br Apache, for Java BM Rational™
Redstone Software

Telcordia Technologies

measurement of Web services. Instructors should be able to design laboratory exercises
based on topics covered during the previous weeks. A large number of commercial and
open-source-testing tools are available for use in a software-testing laboratory.

Sample graduate course in software testing: We assume a semester-long course worth
3-credits. The students entering this course have not had any prior course in software testing,
such as the undergraduate course described above. In addition to the examinations, students



X PREFACE

will be required to read and present recent research material. Students are exposed to testing
tools via unscheduled laboratory exercises.

Testing tools: There is a large set of testing tools available in the commercial, freeware,
and open-source domains. A small sample of such tools is listed in Table 4.

Evolutionary book: I expect this book to evolve over time. Advances in topics covered
in this book, and any new topics that develop, will be included in subsequent editions. Any
errors found by me and/or reported by the readers will be corrected. Readers are encouraged
to visit the following site for latest information about the book.

www.pearsoned.co.in/adityapmathur

While this book covers significant material in software testing, several advanced topics
could not be included to limit its size. I am planning a separate volume of the book to take
care of the advanced topics on the subject and can be used by students who would like to
know much more about software testing as well as professionals in the industry.

Cash awards: In the past, I have given cash rewards to students who carefully read the
material and reported any kind of error. I plan to retain the cash-reward approach as a means
for continuous quality improvement.

Aditya P. Mathur
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