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Preface

Activity learning from sensor data is a research topic that is making its way into
many fields including machine learning, pervasive computing, psychology, and soci-
ology. The ability to discover and model activities based on collected sensor data has
matured. These methods are now able to handle increasingly complex with increas-
ingly complex situations including unscripted activities, interrupted or interwoven
activities, real-time learning, and learning from multiple users or residents. At the
same time, there have been advances in the application of the theoretical techniques
to challenge real-world problems including health monitoring and home automation.

The goal of this book is to define the notion of an activity model learned from
sensor data and to present the key algorithms that form the core of the field. While
many current efforts have contributed to the ability to automatically recognize known
activities, there are other aspects of activity learning that we want to include in this
treatment. These include discovering activity patterns from unlabeled data and pre-
dicting when specific activities will occur in the future, as well as mapping sensor
event sequences to predefined activity labels. We also want to discuss the challenges
that are faced when these theoretical techniques are applied to real-world problems
and suggest methods for addressing the challenges.

This book is designed for an interdisciplinary audience who would like to use or
design activity learning techniques. As a result, most of the ideas are presented from
the ground up, with little assumptions about the background of the reader. Ideally,
the book will provide some helpful background and guidance to researchers, under-
graduate or graduate students, or practitioners who want to incorporate the ideas into
their own work.

The best way to understand activity learning techniques is to look at activity sensor
data, play with existing tools, and writing your own code. To help with this process,
we provide code for many of the techniques described in this book. A variety of
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activity sensor datasets are available for your use as well. All of the related book
materials can be found online at http://eecs.wsu.edu/~cook/albook.

We would like to thank the many individuals who helped us with this book.
Jacqueline Southwick took the activity photographs that we included and the team of
Kyle Elsalhi and Anthony Simmons, who generated the Kinect-based motion history
image. Numerous individuals contributed to the data collections we made available
with this book and who provided feedback on drafts of the book. These include Larry
Holder, Maureen Schmitter-Edgecombe, Aaron Crandall, Brian Thomas, Yasmin
Sahaf, Kyle Feuz, Prafulla Dawadi, Ehsan Nazerfard, Bryan Mingr, Adriana Seelye,
Carolyn Parsey, Jennifer Walker, Alyssa Weakley, Sue Nelson, Thomas Cowger,
Selina Akter, and Prasanth Lade. Our editors at Wiley provided guidance throughout
the entire process and for that we are grateful. Last but not least, we want to thank
our colleagues, friends, and family who were unfailingly supportive of this effort.
Diane would like to thank her family, Larry, Abby, and Ryan, who kept her going
with ideas, encouragement, and lots of humor. She dedicates this book to them.
Narayanan dedicates this book to his family, Krishnan, Geetha, and Karthik for their
constant encouragement and support.

DiANE J. Cook and
NarayANAN C. KRISHNAN
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