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Integral Geometry
and

Geometric Probability

Now available in the Cambridge Mathematical Library, the classic work from Luis
Santal6. Integral geometry originated with problems on geometrical probability
and convex bodies. Its later developments, however, have proved useful in sev-
eral fields ranging from pure mathematics (measure theory, continuous groups) to
technical and applied disciplines (pattern recognition, stereology). The book is a
systematic exposition of the theory and a compilation of the main results in the
field. The volume can be used to complement courses on differential geometry,
Lie groups or probability, or differential geometry. It is ideal both as a reference
and for those wishing to enter the field.
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Editor's Statement

A large body of mathematics consists of facts that can be presented and
described much like any other natural phenomenon. These facts,. at times
ei(plicitly brought out as theorems, at other times concealed within a proof,
make up most of the applications of mathematics, and are the most likely
to survive changes of style and of interest.

This ENCYCLOPEDIA will attempt to present the factual body of all
mathematics. Clarity of exposition, accessibility to the non-specialist, and a
thorough bibliography are required of each author. Volumes will appear in
no particular order, but will be organized into sections, each one comprising
a recognizable branch of present-day mathematics. Numbers of volumes and
sections will be reconsidered as times and needs change.

It is hoped that this enterprise will make mathematics more widely used
where it is needed, and more accessible in fields in which it can be applied but
where it has not yet penetrated because of insufficient information.

GIAN-CARLO ROTA



Foreword

This monograph is the first in a projected series on Probability Theory.

Though its title “Integral Geometry™ may appear somewhat unusual in this
context it is nevertheless quite appropriate, for Integral Geometry is an
outgrowth of what in the olden days was referred to as “‘geometric probabil-
ities.”

Originating, as legend has it, with the Buffon needle problem (which after
nearly two centuries has lost little of its elegance and appeal), geometric
probabilities have run into difficulties culminating in the paradoxes of
Bertrand which threatened the fledgling field with banishment from the home
of Mathematics. In rescuing it from this fate, Poincaré made the suggestion
that the arbitrariness of definition underlying the paradoxes could be removed
by tying closer the definition of probability with a geometric group of which it
would have to be an invariant.

Thus a union of concepts was born that was to become Integral Geometry.

It is unfortunate that in the past forty or so years during which Probability
Theory experienced its most spectacular rise to mathematical prominence,
Integral Geometry has stayed on its fringes. Only quite recently has there been
a reawakening of interest among practitioners of Probability Theory in this
beautiful and fascinating branch of Mathematics, and thus the book by
Professor Santalé, for many years the undisputed leader in the field of Integral
Geometry, comes at a most appropriate time.

Complete and scholarly, the book also repeatedly belies the popular belief
that applicability and elegance are incompatible.

Above all the book should remind all of us that Probability Theory is
measure theory with a “soul” which in this case is provided not by Physics or by
games of chance or by Economics but by the most ancient and noble of all
of mathematical disciplines, namely Geometry.

MARK KAcC
General Editor, Section on Probability

xiii



Preface

During the years 1935-1939, W. Blaschke and his school in the Mathematics
Seminar of the University of Hamburg initiated a series of papers under the
generic title “Integral Geometry.” Most of the problems treated had their
roots in the classical theory of geometric probability and one of the project’s
main purposes was to investigate whether these probabilistic ideas could be
fruitfully applied to obtain results of geometric interest, particularly in the
fields of convex bodies and differential geometry in the large. The contents
of this early work were included in Blaschke's book Vorlesungen iiber
Integralgeometrie [S1].

To apply the idea of probability to random elements that are geometric
objects (such as points, lines, geodesics, congruent sets, motions, or affinities),
it is necessary, first, to define a measure for such sets of elements. Then, the
evaluation of this measure for specific scts sometimes leads to remarkable
consequences of a purely geometric character, in which the idea of probability
turns out to be accidental. The definition of such a measure depends on the
geometry with which we are dealing. According to Klein's famous Erlangen
Program (1872), the criterion that distinguishes one geometry from another
is the group of transformations under which the propositions remain valid.
Thus, for the purposes of integral geometry, it seems natural to choose the
measure in such a way that it remains invariant under the corresponding
group of transformations. This sequence of underlying mathematical concepts
— probability, measure, groups, and gecometry —forms the basis of integral
geometry.

The original work was limited almost entirely to metric (euclidean and
noneuclidean) geometry and the probabilistic ideas were those of the classical
geometric probability initiated by Crofton [132, 133] and Czuber [134} in
the last century. After 1940 the new methods of differential geometry and
group theory made it possible to unify and to generalize several questions in
integral geometry, which led to new problems and noteworthy progress in
this field. Consideration of a differentiable manifold (instead of euclidean
space) and of a transitive transformation group operating on it gave rise to
integral geometry in homogeneous spaces, and the whole theory was illuminated
by the ideas of the theory of locally compact groups and their invariant
measures. The inclusion of the methods of integral geometry within the
framework of the theory of homogencous spaces was the work of A. Weil

AV



XVi Preface

{710, 711] and S. S. Chern [105]. However, integral geometry generally has
been restricted to Lie’s transformation groups—more precisely, to matrix
Lie groups —for two reasons. First, because they are the most important from
the point of view of their geometric applications, and second, because they
lead to more computable results. Further, the resulting simplification of the
presentation compensates for the loss of generality.

As main references on integral geometry, after the work of Blaschke [51],
we have our early introduction [568] and the books of M. 1. Stoka [646, 647].
Also closely related are Hadwiger’s books [270, 274]. With regard to the
theory of geometric probability there is the book of Deltheil [144] and
the nice brochure of M. G. Kendall and P. A. P. Moran [335], where a large
number of applications to different fields are brought together. The present
book intends to provide a synopsis of the main topics of integral geometry,
including their origins and their applications, with the aim of showing how
the interplay between geometry, group theory, and probability has become
fruitful for all of these fields.

In recent times, mainly due to the work of R. E. Miles [410, 411, 414, 418],
the field of integral geometry has been enriched by the introduction of the
ideas and tools of stochastic processes. In a symposium on integral geometry
and geometric probability held at Oberwolfach (Germany) in June 1969,
D. G. Kendall, K. Krickeberg, and R. E. Miles suggested the term *‘stochastic
geometry” to indicate precisely those contents of geometry and group theory
that are in a sense related to stochastic processes. This constitutes a promising
field, to which the present book may be considered an introduction, at least
from its geometric point of view (see [294] and G. Matheron’s recent book
[401a}, where the theory of random sets and applications to practical problems
are treated in great detail, using deep topological ideas).

The book presupposes only a basic course in advanced calculus, although
some elementary knowledge of differential geometry, group theory, and
probability is desirable. Publications in which prerequisite material can be
found are always indicated where apt.

Part I is concerned with integral geometry on the euclidean plane. It is
treated in an elementary way. Most of the problems are handled by specific
techniques and the main results are proved directly and independently in each
case. We consider this part fundamental in that it exhibits the power of the
methods and their usefulness in various fields. Chapters 1 to 4 are classical
in the theory of geometric probability. They are devoted to the current
notions on the measure of sets of points and lines in the plane, including some
fairly recent results, in order to illustrate the breadth of the field of applica-
tions. Chapter 5 deals with sets of strips as an immediate generalization of
sets of lines. In Chapters 6 and 7 the kinematic measure in the plane is treated
in detail in order to emphasize how the measure on groups can be applied
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to strictly geometric problems. These chapters prepare the ground for the
general approach of Chapters 9 and 10. Chapter 8 deals with some discrete
subgroups of the motions group and their interpretation from the integral
geometric viewpoint.

Part 1I presents an account of the necessary elements of the theory of Lie
groups and homogeneous spaces in order to obtain the invariant measures
in these spaces and their properties. The general theory is exemplified by the
groups of affine transformations (Chapter 11) and the group of motions in
euclidean space (Chapter 12). Several examples are discussed. For instance,
it is shown that the affine invariant measure of sets of planes with reference
to a fixed convex body permits a geometric interpretation of some inequalities
among various characteristics of the convex body —a typical result of integral
geometry (Sections 2 and 3 of Chapter 11).

Part III is concerned with integral geometry in euclidean n-dimensional
space. Chapter 13 contains a résumé of the main results on convex sets in
n-dimensional space. Chapter 14 is devoted to the measure of linear spaces
that intersect a convex set or, more generally, a compact manifold embedded
in euclidean space. Several integral formulas are obtained and some applica-
tions to the theory of geometric probability are mentioned. Chapter 15 is
concerned with the so-called kinematic fundamental formula, which includes
most formulas in euclidean integral geometry as special or limiting cases.
In Chapter 16 the general theory is applied in detail to three-dimensional
euclidean space, especially to the question of the size distribution of particles
embedded in a convex body when only two-dimensional sections are available,
a problem that has several areas of application and has received considerable
attention in recent years, giving rise to so-called stereology [166].

Finally, Part IV deals with integral geometry in spaces of constant curvature
(noneuclidean integral geometry), in particular integral geometry on the
sphere, and some new trends in integral geometry (integral geometry and
foliated spaces, integral geometry in complex spaces, symplectic integral
geometry, and integral geometry in the sense of Gelfand and Helgason).
A survey of these new trends is given, entirely without proofs, but with detailed
references to the literature.

Each chapter ends with a section of notes or notes and exercises, including
a number of references and theorems without proof and emphasizing applica-
tions. These notes increase the amount of material covered and, with the
extensive bibliography, establish the book’s encyclopedic character.

Luis A. SANTALO
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