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Pretace

The aim of homogenization theory is to establish the macroscopic behaviour of a
system which is ‘microscopically’ heterogeneous, in order to describe some char-
acteristics of the heterogeneous medium (for instance, its thermal or electrical
conductivity). This means that the heterogeneous material is replaced by a ho-
mogeneous fictitious one (the ‘homogenized’ material), whose global (or overall)
characteristics are a good approximation of the initial ones. From the math-
ematical point of view, this signifies mainly that the solutions of a boundary
value problem, depending on a small parameter, converge to the solution of a
limit boundary value problem which is explicitly described.

During the last ten years, we have both had the opportunity to give courses
on homogenization theory for graduate and postgraduate students in several
universities and schools of engineers. We realized that, while at the research level
many excellent books have been written in the past, for the graduate level there
was a lack of clementary reference books which could be used as an introduction
to the field. Also, many classical and known results in linear homogenization,
though currently taught, arc not rcally available in the literature, either in books
or in research articles. This lack naturally led to the idea to extend the material
of our courses into the book we present here.

When teaching, we had to take into account that often the audience was
not really familiar with the variational approach of partial differential equa-
tions (PDEs), which is the natural framework for homogenization theory. This
is why we started the book with this topic. It is the subject of the first four
chapters,

We have deliberately chosen not to present too many results, but to have
those included all well explained. We focus our attention on the periodic ho-
mogenization of linear partial differential equations. A periodic distribution of
the heterogeneities is a realistic assumnption for a large class of applications. From
the mathematical point of view, it contains the main difficulties arising in the
study of composite materials.

Chapter 1 deals with two notions of convergence, the weak and the weak™* one.
This allows us to describe, in Chapter 2, the asymptotic behaviour of rapidly
oscillating periodic functions.

In Chapter 3 we introduce the distributions and give the basic notions and
theorems of Sobolev spaces. We pay particular attention to Sobolev spaces of
periodic functions. The results of this chapter, as well as those of Chapter 1,
are classical and are the necessary prerequisites for the variational approach of
PDEs. We do not give their proofs but detailed references are quoted.
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In Chapter 4 the variational approach to classical second order linear elliptic
equations is introduced. Existence and uniqueness results for solutions of these
equations with various boundary conditions are proved. Again we treat in detail
the case of periodic boundary conditions.

From Chapter 5 to Chapter 12 we treat the periodic homogenization of several
kinds of second order boundary value problems with rapidly oscillating periodic
coeflicients. We are concerned with elliptic equations, the linearized system of
elasticity, the heat and the wave equations.

The model case is the Dirichlet problem for elliptic equations. The results
concerning this case are the object of Chapters 5 and 6. In Chapter 5 we formu-
late the problem and list some physical examples. We also study two particular
cases: the one-dimensional case and the case of layered materials. In Chapter 6
we state the general homogenization result and prove some properties of the
homogenized coefficients.

The main homogenization methods for proving the general result are pre-
sented in Chapters 7-9. Thus, the multiple-scale method is described in Chap-
ter 7. Chapter 8 is devoted to the oscillating test functions method. Finally, in
Chapter 9 we introduce the two-scale convergence method.

In Chapter 8 we also prove some important related results, as for instance
the convergence of energies and the existence of correctors. The convergence of
eigenvalues and eigenvectors is also proved.

Chapters 10, 11 and 12 are devoted to the linearized system of elasticity,
the heat equation and the wave equations respectively. In each chapter, we
start by proving the existence and uniqueness of a solution. Then, we study the
homogenization of the problem.

We conclude this book with a short overview of some general approaches to
the study of the non-periodic case.

The idea of writing this book was to provide detailed proofs and tools adapted
to the level we have in mind. Our hope is to give a background of homogenization
theory not only to students, but also to researchers- —in mathematics as well as
in engineering, mechanics, or physics— who are interested in a mathematical
introduction to the field.

Special thanks go to three of our colleagues. We thank Petru Mironescu for
many helpful suggestions concerning the first four chapters. We also express our
gratitude to Olivier Alvarez for his accurate reading of the manuscript and for
his useful remarks and suggestions. Finally, we thank Thomas Lanchand-Robert
for his valuable and patient help while we were typing this book in TEX.

This book represents for us the ultimate ‘joint venture’, which would have
never been possible without a truly deep friendship and mutual understanding.

Paris D.C.
Rouen P.D.
March 1999
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Introduction

The aim of this book is to present the mathematical theory of the homogeniza-
tion. This theory has been introduced in order to describe the behaviour of
composite materials.

Composite materials are characterized by the fact that they contain two or
more finely mixed constituents. They are widely used nowadays in industry, due
to their properties. Indeed, they have in general a *better’ behaviour than the
average behaviour of their individual constituents. Well-known examples are the
superconducting multifilamentary composites which are used in the composition
of optical fibres.

Generally speaking. in a composite the heterogeneities are small compared
to its global dimension. So. two scales characterize the material, the micro-
scopic one, describing the heterogeneities, and the macroscopic one, describing
the global behaviour of the composite. From the macroscopic point of view, the
composite looks like a ‘homogeneous’ material. The aim of ‘homogenization’
is precisely to give the macroscopic properties of the composite by taking into
account the properties of the microscopic structure.

As a model case, let us fix our attention on the problem of the steady heat
conduction in an isotropic composite.

Consider first a homogeneous body occupying © with thermal conductivity
7. For simplicity, we assume that the material is isotropic, which means that
is a scalar. Suppose that f represents the heat source and g the temperature on
the surface 92 of the body. which we can assume to be equal to zero.

Then the temperature v = u(x) at the point z € () satisfies the following
homogeneous Dirichlet problem:

—div (ZVu(x)) = f(x) inQ
(¥ () = f(2) o
u=0 ondQ,
where Vu denotes the gradient of u defined by
Ju Ju
Vu=gradu = | —. ..., — ].
u = grad u ((‘).’1?1 . (91‘,;\/)
Since 7 is constant, this can be rewritten in the form
— Au = in 0
{ TAu=/ 0 (0.2)
u=0 on J<,

where Au = div(grad u). The flux of the temperature is defined by

g =1 grad u. (0.3)
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This is a classical elliptic boundary value problem and it is well known that if
f is sufficiently smooth, it admits a unique solution u which is twice differentiable

and solves system (0.2) at any point x in €.

If now we consider a heterogeneous material occupying €2, then the thermal
conductivity takes different values in each component of the composite. Hence,
~ is now a function, which is discontinuous in {2, since it jumps over surfaces
which separate the constituents. To simplify. suppose we are in presence of a
mixture of two materials, one occupying the subdomain €2; and the second one
the subdomain Q;, with , NQy =G and 2 =Q, UL U (691 N 892).

Suppose also that the thermal conductivity of the body occupying € is v
and that of the body occupying 25 is 72, i.e.

( ) {')1 ifre Ql
€r) =
7 1o ifx € Q.

Then the temperature and flux of the temperature in a point x € ) of the
composite take respectively. the values

{111(3:) ifre
u(x) = .
ua(r) ifre

and

q1 =71 grad u;  in

g2 =2 grad us  in Q.
The usual physical assumptions are the continuity of the temperature u and of
the flux ¢ at the interface of the two materials. i.e.

Uy = Ug on 9% N 08,
(0.4)
Q1M =q2-ne  on JQ NON,,
where 7, is the outward normal unit vector to 9€;, i = 1,2 and n; = —ny on

082 N 0Ny. Therefore, the temperature u is solution of the stationary thermal
problem. Then the corresponding system (0.1) reads
—div (y(x) grad u(z)) = f(x) in QU
u=0 ondN

0.5
u; = us on 9§ NI, (05)
qi Ny =gqo-ny on dQ; NIN.
Formally, we can write this system in the form
—div (y(x) grad u(r)) = f(x) in
f i ) e ) = 1 06)
u=0 on 9.

Observe that from (0.4). it follows that the gradient of u is discontinuous.
Moreover, in general, the flux ¢ is not differentiable.
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Taking into account these discontinuities, the question is what is the appro-
priate mathematical formulation of this problem and in which functional space
can one have a solution (since one can not expect to have solutions of class C)?

An answer to these questions can be given by introducing a weak notion of
solution. It is built on the notion of weak derivative, the so-called derivative in
the sense of distributions. This is defined in Chapter 3, where we also introduce
the Sobolev spaces which constitute the natural functional framework for weak
solutions.

In the definition of a weak solution, problem (0.6) (or (0.5)) is replaced by a
variational formulation, namely

Find u € H such that

al (9u ov
;/Qﬁy( B, or dz —-/fvdr Vv € H, (0.7)

where H is an appropriate Sobolev space taking into account the boundary
conditions on u. In (0.7) the derivatives are taken in the sense of distributions.

Of course, if u were sufficiently smooth, (0.7) and (0.6) would be equivalent.
As seen above, this is not the case for a composite material, so the sense to be
given to (0.6) is only that u solves (0.7). Let us point out that the equation in
(0.7) is checked for any v belonging to the space H. This is why v is usually
called a test function.

Existence and uniqueness results of a weak solution of (0.7) are proved in
Chapter 4, where we also treat other kinds of boundary value problems.

Let us turn back to the question of the macroscopic behaviour of the compos-
ite material occupying 2. Suppose that the heterogeneities are very small with
respect to the size of 2 and that they are evenly distributed. This is a realistic
assumption for a large class of applications.

From the mathematical point of view, one can modelize this distribution by
supposing that it is a periodic one (see Fig. 0.1).

This periodicity can be represented by a small parameter, ‘=’

Then the coefficient - in (0.7) depends on ¢ and (0.7) reads

Find u® € H such that

Z/ 5;5:dv—/fz’dx Vv e H. (0.8)

A natural way to introduce the periodicity of 4 in (0.8) is to suppose that it
has the form

V(@) =1 (%) a.e. on RV, (0.9)

where 7y is a given periodic function of period Y. This means that we are given
a reference period Y, in which the reference heterogeneities are given. By defi-
nition (0.9), the heterogeneities in 2 are periodic of period €Y and their size is
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of order of €. Problem (0.8) is then written as follows:

Find u® € H such that

Z / 6”' O o= [ fodr. wen (0.10)
9] a-tz XL Q

and Fig. 0.2 shows the periodic structure of €). Observe that two scales char-
acterize our model problem (0.10), the macroscopic scale x and the microscopic

one —, describing the micro-oscillations.

TEhe discontinuities of this problem make the model very difficult to treat, in
particular from the numerical point of view. Also, the pointwise knowledge of the
characteristic of the material does not provide in a simple way any information
on its global behaviour.

Observe also that making the heterogeneities smaller and smaller means that
we ‘homogenize’ the mixture and from the mathematical point of view this means
that e tends to zero. Taking ¢ — 0 is the mathematical ‘homogenization’ of
problem (0.10).

Many natural questions arise:

1) Does the temperature u° converge to some limit function u°?

(

(2) If that is true. does u° solve some limit boundary value problem?
(3) Are then the coefficients of the limit problem constant?

(

4) Finally, is «° a good approximation of 1u<?

Answering these questions is the aim of the mathematical theory of ‘homog-
enization’.

These questions are very important in the applications since, if one can give
positive answers, then the limit coefficients. as it is well known from engineers
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and physicians, are good approximations of the global characteristics of the com-
posite material, when regarded as an homogeneous one. Moreover, replacing the
problem by the limit one allows us to make easy numerical computations.

The first remark is that the function 4° converges in a weak sense to the
mean value of v , i.e. one has

/’yf(;r)r(;r) dr — / My-(v) v(r) dx. (0.11)
Q Q

for any integrable function v. Here the mean value My () is defined by

My (v) = %/}J(y)dy-

This result on the convergence of periodic functions is proved in Chapter 2. The
notion of weak convergence and related properties are presented in Chapter 1.
Oue can also (thanks to weak-compactness results stated in Chapter 1) show
that «° converges to some function u® and that Vu® weakly converges to Vu©.
The question is whether these convergences and convergence (0.11) are suffi-
cient to homogenize problem (0.10). To do that, one has to pass to the limit in
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the product vVu®. This is the main difficulty in homogenization theory. Ac-
tually, in general (see Chapters 1 and 2), the product of two weakly convergent
sequences does not converge to the product of the weak limits. In Section 5.1
we show that there is a vector function £, weak limit of the product v*Vu® and

satisfying the equation
—div& = f. (0.12)

But

6 # M)’(PY)VU(]?
so that from (0.12) one cannot easily deduce an equation satisfied by 4. This
already occurs in the one-dimensional case where (2 is some interval }d;, d2[. One

has (see Section 5.3)
1 du®

Y

Moreover, u® is the unique solution of the homogenized problem

d ( 1 duo) .
——— | —————|=f in]d.dq|
dz My(l) dr

5

Uo(dl) = ‘Uo(dg) =0.

Clearly, £ # My (y)Vu?, since
1

w0

Even for the one-dimensional case this homogenization result is not trivial.
The situation is of course, more complicated in the general N-dimensional case.
The one-dimensional result could suggest that in the N-dimensional case the
limit problem can be described in terms of the mean value of v~!. This is not
true, as can already be seen in the case of layered materials studied in Section 5.4,

where vy depends only on one variable, say r,. In this case, the homogenized
problem of (0.10) is

# M (7).

{ —div (A°Vu%) = f inQ 0.13)

u’' =0 ondQ,

where the homogenized matrix A° is constant. diagonal and given by

0 0
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Let us point out that the homogenized material is no longer isotropic, since
A® is not of the form a°1.

Observe also that in these particular examples of the one-dimensional case
and of layered materials, the homogenized coefficients are algebraic formulas
involving 7.

For the general N-dimensional case, as seen in Chapter 6, the homogenized
problem is still of the form (0.13). The coefficients of A? are defined by means of
some periodic functions which are the solutions of some boundary value problems
of the same type as (0.10) posed in the reference cell Y. The coefficients a?j of

the matrix A° are defined by

0,—3_/ ' ——1—/ O gy Vii=1....N 0.14
% = 7 Yvéz]dy Vi), Vg W Vii=Ll.N, (0.14)

where §;; is the Kronecker symbol. The function x; for j = 1,...,N is the
solution of the problem

Oy

— InY
Jy;

—div (v (y)Vx;) = -
X; Y-periodic
My () = 0.

(0.15)

This result can be proved by different methods. We present in this book
three of them.

In Chapter 7 we use the multiple-scale method, which consists of searching
for 4 in the form

u(x) = ug (.r, ;) + su, (;r, g) + 2us (I. g) + ey (0.16)

where u; = u;(x,y) are Y-periodic in the second variable y.

The multiple-scale method is a classical one, widely used in mechanics and
physics for problems containing several small parameters describing different
scalings. It is well adapted to the periodic framework in which we work in
this book. Its interest is that in general, it permits us to obtain formally the
homogenized problem.

Chapter 8 is devoted to the oscillating test functions method introduced by
L. Tartar. As we have seen above, in problem (0.10) the function u¢ is continuous
at the interface 903 N9Q, but its gradient is not, and behaves in such a way that
the flux yVu® remains continuous. The idea of Tartar's method is to construct
test functions v = w$p for (0.10) having the same kind of discontinuities as u¢
and having a known limit. For our example, one has

urj(z,-):A\j(f)Jr.nj. j=1....N, (0.17)
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and ¢ is a smooth function vanishing on 9€2. Using these test functions in the
variational formulation (0.10). one is able to pass to the limit and identify € in
terms of u%. Actually, one obtains € in the form

£ = A"Vl

This together with (0.12) gives the homogenized problem.
In Chapter 8 we also prove a corrector result which for the model prob-
lem (0.10) is the following. Let us introduce the (corrector) matrix C* =

(ij)lgi,jgN defined by
dw; ((x
Cyle) = G2 (% )

where w; is given by (0.17). Then,
Vu® — CVy°

in a usual (strong) convergence.
Moreover, let us observe that, when applying the multiple-scale method one

finds
N

‘—;Xj(y)%?-
Therefore
Vui(a) = w%wivm(f) Q"—O(r)—sﬁ:,ﬂ<f)v(?io)(w)+---
Pt €/ Oxy Pt £ Oy
= V) -y w(2)v(55)w

Hence C¢(2)Vu®(z) is the first term in the asymptotic expansion (0.16) of Vu©.

In the same chapter we also give further properties of the homogenized prob-
lem.

In Chapter 9 we prove again the convergence result by the two-scale method
which takes into account the two scales of the problem and introduces the no-
tion of ‘two-scale convergence’. This convergence is tested on functions of the
form ¢ (z,x/c). One of the interests of the two-scale method is that it Jjustifies
mathematically the formal asymptotic developtent (0. 16).

In Chapters 10. 11, and 12 we treat respectively the linearized system of
elasticity, the heat equation and the wave equation. For each problem, we first
prove the existence and uniqueness of the solution, then we study their homog-
enization.

Finally, Chapter 13 contains a short overview of some methods nsed in the
general non-periodic case. In particular. we fix our attention on G-conver gence
and H-convergence.
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Weak and weak™ convergences in Banach
spaces

We recall in this chapter the main properties of weak and weak* convergence in
a Banach space. We also detail these notions for the particular case of LP-spaces.

Let us begin by recalling the notions of a Banach and a Hilbert space which
are the functional spaces in which we work in this book. The spaces we consider
in this book are all real.

Definition 1.1. A mapping
[-l:2v€e Ev— ] € Ry
is called a norm on the vector space E iff
lz|| =0 <2 =0
Azl = |Al||x]l. forany A€ R. r € E
o+ yll < llell + Iyl for any x., y € E.

Then E is called a normed space and its norm is denoted by || - || 5.
Moreover, E is called a Banach spacc iff it is complete with respect to the
following convergence (called strong convergence):

r, —»rin B <= |x, - I”F — 0.

Definition 1.2. Let H be a real linear space. A mapping
(Ja:(ry)e HxHr— (x,y)g €R
is called a (real) scalar product iff
(z,2)g >0 2 #0.
(2, 9)n = (y.2), foranyx.ye H
Ae+py. 2)gp = Mx.2)p + p(y. 2)y. forany A p€R, x, y, 2 € H.

Moreover. if H is a Banach space with respect to the norm associated to this

scalar product, i.e. with
1
2ty = (2. 1)

2
H

then H is called a Hilbert space.



