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Preface

AFTER an informal introduction to the algebra of classes, three
different axiomatizations are studied in some detail, and an
outline of a fourth system of axioms is given in the examples.
In the last chapter Boolean algebra is examined in the setting of
the theory of partial order. The treatment is entirely elementary
and my aim has been to use Boolean algebra as a simple medium
for introducing important concepts of modern algebra. There is
a large collection of examples, with full solutions at the end of the
book.

I have used the symbols U, N for union and intersection, but I
have not introduced their current readings “cup” and “cap”,
which I find so unhelpful. I myself prefer to read “4 n B> as
“A and B”, and “4 U B” as “A or B” since the members of
“A U B” are the member of 4 or of B, and the members of
“A N B” are members of 4 and of B, and of course this reading
is in conformity with the interpretation of Boolean algebra as an
algebra of sentences.

I am happy to record my thanks to Mr. M. T. Partis for
help in reading the proofs and to the compositors and printers
for the excellence of their work.

R. L. GOODSTEIN.
University of Leicester.
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CHAPTER ONE

The informal algebra of classes

1.0. Classes. Collections of objects, whether they are identified
by a survey of their members or by means of some characteristic
property which their members have, are called classes. The
students in a particular room at a particular time form a class, the
voters on an electoral roll of a certain town form a class (as do
their names on the roll), the hairs on a man’s head, the blood-cells
in his body, the seconds of time he has lived, all these form classes.
Featherless bipeds and mammals with the power of speech are
classes characterized by common properties of their members;
they are classes with a common membership, equal classes, as we
shall say.

1.1. Membership. We shall use capital letters as names of classes.
If an object a is a member of a class 4 we shall write

acA

and say that “a belongs to 4”, or “ais in A”. The membership
symbol “g” (the Greek letter ¢) is the initial letter of the Greek

. verb “to be”. Thus “Earth ¢ Planets” expresses the relationship

of our earth to the class of planets.
If a is not a member of a class 4 then we write

ag A

If we can write down signs for all the members of a class we
represent this class by enclosing ‘the signs in brackets. Thus

1



2 BOOLEAN ALGEBRA

{1, 2, 3} is the class containing the numbers 1, 2 and 3 (and
nothing else), {2, 1, 3}, {3, 1, 2}, {1, 1, 2, 3} for instance denoting
the same class, and {a, b, ¢, d} is the class containing just the first
four letters- of the alphabet. We can represent any fairly small
class in this way, but the notation is obviously impractical for
large classes (like the class of all numbers from 1 to 10'°) and
meaningless for classes with an unlimited supply of members (like
the class of all whole numbers).

The class whose sole member is some object 4, namely the class
{4}, must be distinguished from A itself. For instance if 4 = {1,2}
then {4} is a class with only one member, but 4 is a class with
two members. A class with a single member is called a unit class.
“The Master of Trinity” is a unit class, and so is “The Queen of
England”.

1.2. Inclusion. If every member of a class A is also a member of
a class B we say that the class 4 is contained in the class B, or 4
is included in B, and write

A < B.

It is important to distinguish between the membership relation
“g” and the inclusion relation “c", The membership relation is
the relation in which a member of a class stands to the class itself;
on one side (the left) of the membership relation stands a class
member, and on the other side (the right) stands a class. But
inclusion is a relation between classes, and a class-stands on each
side of the relation of inclusion. If 4 < B, we say that 4 is a
subclass of B, and that B is a superclass of A. Every class is -
included in itself, thus 4 < A4, because the members of A (on the
left) are necessarily members of the same class 4 (on the right).
A subclass of a class 4 which is not just A itself, is called a proper
subclass, If 4 < Band B < A4 then 4 = B, for every member of
A is a member of B, and every member of B is a member of 4, so
that 4 and B have the same members.
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1.3. The empty class and the universal class. A convenient fiction
is the empty, or null class, the class without members. If no
candidate presents himself for some examination, the class of
candidates is the empty class. We denote the empty class by 0;
thus the relation x ¢ 0 is false for every object x in the world.
Another convenient fiction is the wuniversal class, the class of
everything (or everything under consideration) which we denote
by 1. The null class and the universal class are each unique. The
null class is considered to be a subclass of every class (for there is
no object which is a member of 0 and not a member of any A).
Any class is of course a subclass of the universal class. In particular
0cl. :

1.4. The complement of a class. If we remove from the universal
class all the members of some class 4, the objects which remain
form the class complement of A, denoted by A’. The classes 4, A’
have no members in common, but everything in the universal
class is either a2 member of 4 or a member of A’. The complement
of the null class is the universal class, and conversely the comple-
ment of the universal class is the null class. That is '

=1, I"=0.

Complementation is involutory, that is to say the complement of
the complement is the original class.

1.5. Union and intersection. Given two classes 4, B we may form
the class C, called the union of A and Bwhose members are precisely
those objects which are members of A or members of B; if 4 and B
have any members in common, these common members occur
once only in the union. For instance if 4 and B are sacks of
potatoes their union is formed by emptying both sacks into a
third. The union of two classes A4 and B is denoted by

AU B.
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By definition union is commutative; that is

AUuB=BuUA.
Examples
1. If A= {ab,cd}
and if B={c,dyef}
then AuB={ab,cdef}

2. If A is the class of even numbers and B is the class of odd
numbers then A U B is the class of all whole numbers.

3. If A is the class of cats and B the class of Persian cats then
A v B = A, for every Persian cat is a cat.

4, If A is the class of cats and B is the class of cats with tails 5 ft
long then 4 U B = A, for Bis the null class and contributes nothing
to the union.

For any class 4,

Aul0=A4, Aul =1, AU Ad=A.

For the members of 4 U 0 are either members of 4, or members
of 0, and 0 has no members. And the members of 4 U 1 include
the members of 1, and so include everything.

Finally, the members of 4 U 4 are just the members of 4. The
relation 4 U A = A is called the idempotent law for union. Since
every object belongs either to 4 or to 4’ it follows that

Adud =1

The class of members common to two classes is called their
intersection. The intersection of A4, B is denoted by

An B

By definition, intersection is commutative, thatis4 n B = B A,
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Examples
1 If A={abcd},  B={cde}
then AnB={cd}.

2. If A is the class of green-eyed cats, and B is the class of
long-haired cats, then A4 N B is the class of long-haired green-eyed
cats.

3. If A is the class of cats and B the class of dogs then 4 N B
is the null class, for no creature is both cat and dog.

For any class 4

ANl =4, An0 =0, AN A4 =A.

For every member of 4 is common to A4 and the universal class,
and the empty class has nothing in common with 4 (even if 4
itself is null). The third relation, the indempotent law for inter-
section, says just that every member of 4 is common to 4 and
itself. Since 4 and A4’ have no member in common we have

An A =0.

1.6. We proceed to establish some of the important relations which
hold between complementation, inclusion, union and intersection.
1.61. We prove first that, for any classes 4, B

AnBc A, AnBcB
Ac AuB, Bc AuB.

For the common members of A and B (if any) are members of 4,
and members of B, and the union 4 U B consists of both the
members of 4 and the members of B.

1.62. The three relations

GyAcB, (i)4AduB=B (i) AnB =4,

are equivalent, that is to say, all three hold if any one of them
holds. Let (i) hold:

then any member of 4 U B is a member of B, or a member of 4,
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and so of B, that is to say AU B < B, but B< Au B and so
(i) holds; moreover every member of 4 is a common member of
A,B so that A « A~ B, and since 4~ B < A therefore (iii)
holds. Observe the technique by which we have proved an equa-
tion; to show that, say, X = Y, weproveboth X < Yand Y « X,
or in words, every member of the left-hand class is a member of
the right-hand class, and every member of the right-hand class is
also a member of the left-hand class. Next let us suppose that
(i) holds:

since A ¢ AU B and 4 U B = B therefore (i) holds, and hence
(iii) holds. And if we are given (iii) then from A n B < B follows
(i) and hence (ii), which completes the proof.

1.63. De Morgan’s laws. Union and intersection interchange
under complementation.
More precisely,

(AuBY =A n B, (AnBY =A"UB.

These relations are called De Morgan’s laws. It suffices to prove
one of these relations, since each is an immediate consequence of
the other, under complementation. We recall that the complement
of the complement is the original set; from the first relation (with
A', B’ in place of 4, B) we have
(A’VB)Y =(A"NnB")
that is
(A uBY=A4nB
whence, taking the complements of both sides, (for if two classes
are equal so are their complements)
(4’ UB) =(4n By,
that is
AnB=A"UPB

as required.
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We come now to the proof of the first relation.
If ce(AuB) then c¢ AUB and so c¢4 and c¢ B, or in
other words ce A’ and c & B, so that ¢ ¢ A’ n B’, which proves
that

(6)) (AUuB)YcANnPB.

However, if ce A" n B’ then ce A" and ce B, that is, ¢ ¢ 4 and
¢ ¢ B and therefore ¢ § A U B, for all the members of the, union
are members of 4 or members of B. But if c¢ 4 U B then
c ¢ (4 v B), which proves that

(ii) A'nB < (4dv B).
From the inclusions (i), (ii) we obtain the desired equality
(AuBY=4'nAB.

1.7. The associative laws. Both union and intersection are asso-
ciative, that is
Au(BuCO)=([AuBud(,

AnBnCO=(AnB)nC.

To prove the-associative law for union it suffices to observe that
A u (B u C)is the class of objects which belong to 4 or to B or to
C, and (4 u B) U C is the same class. The associative law for
intersection may be obtained from the associative law for union
by means of De Morgan’s laws, but it is simpler just to observe
that 4 n (B n C) is the class of members which are common to
A, B and C, and this is the same class as (4 n B) n C.

In virtue of the associative laws we may write 4 U B U C for
either of (AU B)UC, AU (Bu C) and A n B C for either
of ANB)NC, An(Bn C). This freedom to omit brackets
extends to any number of classes. For instance,

(AuBuC)uD=(AuB)u(CuD)=Au(BuCuD_)

for each of these classes is the class whose members are the
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members of 4, B, C, D, and no others, and so we may write
A u Bu C u D for any of these classes. Since union (and inter-
section) are also commutative we may interchange the order of
classes in

AuBuC
at will. For instance

CUBUA=(CuB)uA4 = AU(Cu B), by the commutative law,
= A U (Bu (), by the same law,
=AuUBuUC.

This result clearly extends to any number of classes, for example

BuDuAuC=BuDuAduC
AuBuDuUC
A4uBu(Du0)
=(AuB)u(Cu D)
=4UBuCuD,

and this is otherwise clear since both BuDu A4Au C and
A u By Cu D are classes formed from the members of 4, B, C
and D (and no others).

1.8. The distributive laws. Each of union and intersection is
distributive over the other. Thus

AvBNnC=(AuvBNA4U0)
and
AnBuC)=AnBudn).

These relations recall the distributive law of common arithmetic
ab+c)=ab+a.c

‘but common arithmetic has only one distributive law [for (a.5) + ¢
is not generally equal to (@ + ¢).(b + ¢)]. To prove that union is
distributive over intersection we observe that if xe 4 U (B n C)
then x belongs either to 4 or to B C; if the former then
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xeAUB, and xe AU C and 5o x&e(4 U B)n (4 U O); if the
latter then x ¢ B and x¢ C and so xe 4 U Band x¢ 4 u C and
again x ¢ (A U B) n (4 u C), which proves that

@) AVuBNnC)c(AuB n(4duC).

Conversely, if xe (A UB)n (4 v C)thenxeAu Bandxe A U C;
if x ¢ A then necessarily x & B and x ¢ C so that xe¢ B~ C and
finally x e A U (B C), and if x & A then it remains true that
x e A U (B n C) which proves that

(ii) MAUuBN(AUVC) cAu(BNnC)

and from (i), (ii) the first distributive law follows.

The second distributive law may be proved in the same way or
may be derived from the first by complementatlon
1.81. The twin relations

AUB=1, AnB=0

hold if, and only if, B = 4’. We have already remarked that
AuA' =1, 4n A" =0, and so it remains to prove that A4’
alone has this property.

From A v B = 1 follows

n(AuB) Anl=A4
and so, by the distributive law
A=A NnA) v nB)
=0u(A'NnB)=A4AnB
whence, by 1.62, 4’ < B.
From A n B = 0 we obtain
Av(AnB)=A4A0u0=4
and so
AuvAn(AUuB)=A4
whence
I1n(4"uUB)= A
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and so S cai JAUB=A4A

and now from 1.62- it follows that B = A’
Thus from both the relations

AuB=1, AnB=0
we derive both
Bc A, A =B
that is,
B =4

1.82. For any classes 4, B, C, (i) if A =« B and 4 = C then
Ac Bn Guand (i)iff4 < C,Bc Cthen4du B < C.
For if (i) 4«= B ghd 4= Cthen A N B = 4,4~ C = Aand so

An(BNnC)=(AnBnC=AnC=4

sothat 4 « BN C;andif (i) 4 « Cand B CthenAu C = C,
BuC=Candso (AUuBUC=4AUBul)=4uC=C
proving that A U B = C.

1.83. If A < B then

AnCc BnC,
and
AuCc BuC_.

ForA=AnBandsodAdnC=An Bn C whence

MAnCONBNCO)=An(BnCO)Nn(BNO)
=AnBNnC=4nC

which proves that AnCcBnC;

and since AU B=B, we have
(AuCQu(BUC)=(AUBU(CUC)=(A4uBUC=BuC
proving that AuCc BuC.

A consequence of these results is that if 4 = B then A N C =
BnC,and AUC=BuUC. For if A =B then 4 c B and
B c A.
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1.84. It follows from 1.61 and 1.83 that
An(4AuB)=A4,

forAn(AuB)c A,and 4 € 4 v Bby 1.6],

so that A=AnAc An(4AduB)

1.85. A necessary and sufficient condition for 4 = B is that
AnB =0; forif Ac Bthen A=AnBand so AnB' =
An(BnB)=An0=0, and conversely if AnB" =0 then

A=Anl=AnBUB)=(ANnBuU(AnB)
=AnNnBu0=4nB

1.86. If for all classes 4, B = 4 then B = 0; for in particular
BcO;but0 = Bandso B=0.

If for all classes 4, A < B then B = 1, for in particular 1 < B;
but Bc landso B = 1.

1.87. If AuB=0
then A = 0and B =0; for 4 =« A U B = 0 so that
A= 0, and similarly B = 0.
1.88. If AnB=1
then A =1and B=1;for1 = AnBc Asothat 4 =1, and
similarly B = 1.

1.9. The difference A — B between two classes 4, B is defined as
the class of all elements of A which are not elements of B, that is

A—B=AnP.

We proceed to examine some properties of class-difference.
We observe first that

_ 1-4=4,
forl —A=1nA = A’; and in particular 1 =0 =0"= 1.
1.91, The two relations

A—B=0, AcB
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are equivalent, forif A « Bthen 4 n B’ = 0, thatis 4 — B =0,
by 1.85, and conversely.
1.92. An important relationship between union and difference is

(4—-ByuB=AuUB;

for (4 —B)uUB=AnB)Y)YuB=(AVB)n(B VB
=AuB)nl=A4AUB.

In particular, if B = 4 then
(A-ByuB=4
for if B = A then AUB=A.

Moreover, A — B= Aifandonlyif An B =0.
Forif A — B= Athen4d = An B'and so

AnB=AnB nNnB
=An (B n B)
=An0=0,

and if 4 n B = 0 then

A=Anl=An(BuyB)
=(AnBu(AnB)=0u(4dnB)
=AnB =4 - B

1.93. Intersection is distributive over difference, that is

Cn(4d—-B)=(Cn A) — (Cn B);
for(CnAd) —(CnB)=(CnAn(Cn By
=(CnA)n(CuUB)
=(CnA4nCY)u(CNnAnB)
=CnAn DB, since CnC =0,
=Cn (4 - B) 4

It is not however true that union is distributive over difference;
this is clear from the union considered in 1.92 because the class
(4 — B) u B contains all the elements of B whereas the class



