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To all my students






Preface

This is a book in the mathematics of numerical differential equations.
I present here the basic theoretical development supporting three
common methods: finite difference method (FDM), finite element
method (FEM), and collocation method (CM). I include description
of the basic techniques and specific examples. The examples drive
the interest in the topic while the technique supports the theoretical
development. Our point of view on this topic is presented in more
detail in the Foreword.

The intended purpose of the book is to help make the current
literature accessible. This is not to say that the reader can jump into
any current paper. Rather, the reader can take most papers, trace
back into the supporting references and find an accessible starting
point that will lead forward. By including both technique and theory,
then the reader will find both the mathematical and the engineering
literature accessible.

Our primary concern is with simulation. Mathematical modeling
is a critical first step in the process. There are many current references
that teach mathematical modeling of scientific observation. Two that
are associated to biology are [Wodarz and Komarova (2015)] and [van
der Berg (2011)]. Other references are cited throughout Part 1. In
general, it is our point of view that developing a differential equation
to represent observed data is only part of the story. The full treatment

vii



viii Preface

must also include numerical simulation. We present this point of view
more completely in the Foreword.

We have chosen not to include discontinuous Galerkin FEM
(GFEM). It is well known that discontinuous GFEM better conserves
basic quantities associated to a particular setting, for instance, fluid
incompressibility. Nevertheless, we contend that knowledge of FEM
should begin with the continuous case. With a strong foundation in
the continuous case, the discontinuous can be easily understood as a
variant.

I imagine that the reader is a graduate student with background
in basic real and complex analysis, functional analysis, and linear
algebra. The level of the background is well within standard graduate
level courses in these topics. Of course background in differential
equations is important.

I use Mathematica. At this time they are at version 10. Mathe-
matica related comments may be false as later versions improve the
functionality of the programming product. The particular program-
ming platform should not be a serious issue. Students at this level
know how to program and have experience writing code for numerical
applications. However, Mathematica does provide symbolic compu-
tation capability. There are times when I do suggest that a particular
algebraic computation be carried out in Mathematica.

There are several pathways through this material. There is, of
course, the intended or sequential path. I anticipate that any one
presenting this material will pick and choose the examples that he
finds most interesting. Alternatively, Chapters 1, 2, and 7 yield a
basic FDM course. FEM could be presented using Chapters 1, 3, 8,
and 9 along with parts of 6. CM is presented in Chapters 1, 5, parts
of 6, and Chapter 10.

There is material on the important area of numerical solutions
to PDE with stochastic coefficients. However, I only have space to
introduce some of these ideas through a single example.

None of this work would have been possible without the input
of many students over a period of years. In particular, I note that
each of the following students contributed directly to the examples
present here. As a matter of personal pride, I remark that most
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have completed their education and are currently contributing to the
development of technology, many as professorial faculty. In no par-
ticular order, I acknowledge. Mimi Tsuruga, Hans Gilde, Joel Dodge,
Alejandro Falchettore, Saumil Patel, Samuil Jubaed, Tony Markov-
ina, Bolanle Bob-Egbe, Yevgeniy Milman, Henry Chong, Scott Irwin,
Dymtro Kedyk, John Svadlenka, Lisa Ueda, Ariel Lindorf, Maurice
Lepouttre, Daniel Keegan, Amy Wang, Evan Curcio, Jason Groob,
Areum Cho, Nick Crispi, Patrick Brazil, Larry Fenn, Li Qian, Gre-
gory Jarvens, Joseph Kaneko, and Pat Fay.

The cover honors John von Neumann. He understood the effect
of computers on the direction of applied mathematics. It was this
vision and his research in the years following WWII that lead to the
mathematics included in this book.

John Loustau

Hunter College CUNY
New York, NY

2015
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Foreword

We begin with the role of numerical differential equations in science
and the position the topic holds in Mathematics. First, we need to
consider science and continuous mathematical models. Later, we see
the role that numerical analysis plays.

Our knowledge of our environment is largely restricted to mea-
suring change. We observe or measure changes and thereby infer
knowledge to the entity that undergoes change. Mathematics first
enters by providing quantifiable statements for scientific entities and
their properties. The entity becomes a function, itself an idealized
process, and properties such as mass, area or energy are integrals.
It is by means of these mathematical constructs that we are able
to quantize our abstractions. Next through observation, we identify
conservation laws. Classically, these include conservation of mass or
momentum. The ‘no arbitrage’ assumption in economics or finance
is also a conservation law. No matter the source, when the conserva-
tion law is stated mathematically and then differentiated the result
is zero. In other terms, conservation laws when given mathematical
content give us differential equations, the equations of change. The
object is a function, the change is represented as a derivative and
the differential equation encapsulates our knowledge of the change.
However, differential equations are largely intractable. In most cases,
our knowledge of the solution is restricted to the data provided by
numerical mathematics.

xi



xii Foreword

Writing in 1953, Braithwaite (1953) discussed this process in his
book, Scientific Explanation. He used a paradigm to differentiate
mathematics from science and to explain the role of mathematics
in scientific development. The idea is to present science and math
via a division of labor. The process is to first abstract observables as
mathematical constructs and then to use conservation laws to provide
the equations or relationships between the abstracted observables. In
other terms, conservation laws are the means that yield mathematical
models for observed reality. After the model is stated, the results
of mathematical analysis are brought to bear on the problem. The
expected outcome is that the differential equation is solved. With
the solution at hand, the model generates data that can be used
to predict observation. In the final step, if subsequent observation
corresponds to prediction then the model is validated.

In 1947, John von Neumann (Grear, 2011) knew that mathemati-
cal analysis alone could not produce the results necessary to support
scientific and technological progress. The resolution of differential
equations would also use numerical analysis. When the actual solu-
tion was not available then necessary information would be produced
by discrete simulation. This observation must have been accepted
fact for some time prior to 1947. However, the difference in the
post WWII era was that computers provided the means for effective
simulation.

Already at this time many of the fundamental techniques for
approximating the solutions to differential equations were in place.
The Runge Kutta method for ordinary differential equations dates
back to the 19" century. The mathematical foundation for this
technique rested firmly on the Taylor series. For partial differential
equations, finite difference method or FDM, Galerkin finite element
method or GFEM, and spectral collocation were commonly applied
by engineers. Indeed, this was the case as far back as the 1930s. How-
ever, little or nothing was known about the convergence and stability
of these procedures. Hence, there was no means to validate much of
the data that was being generated. Indeed, von Neumann recognized
that convergence and stability questions were critical to the useful
application of numerical analysis. In his 1947 paper with Herman
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Goldstine, von Neumann set out on the path of reshaping numer-
ical analysis as the mathematics necessary to support science and
technology in the forthcoming computer age.

In terms of R. B. Braithwaite, in order to generate the data nec-
essary to apply a mathematical model, there would need to be a
second layer of theory, the stability and convergence theory. In the
original setting, the conservation laws were the enabling results that
interfaced between science and the continuous mathematical model.
Now, there would need to be a second level of theory, the conver-
gence and stability results, and these would be purely mathematical
in nature. These results would bridge from the continuous model
to the discrete model. They would validate the numerically gener-
ated data as trusted representations of the continuous mathematical
model.

Early in this book, we will see an example of exactly the process
just outlined. In this case, we begin with a conservation law related
to conservation of energy. When this statement is rendered mathe-
matically and differentiated, the result is the heat equation. We next
apply Fourier transforms to the 1D case to arrive at a closed form
solution for a specific set of boundary conditions. But beyond those
specific cases, we are left with no alternative to numerical processes.
In this case, the numerical technique that we choose is finite dif-
ferences. As the example unfolds, the reader sees the entire process.
Later in the book, we prove the Lax equivalence theorem. This result
resolves the stability and convergence issue.

The purpose of this book is to present the reader with the basic
techniques necessary to numerically resolve ODE and PDE and to
present the underlying mathematics that supports these methods.

Historically, the stability and convergence theory has always
lagged behind the technique. Even today research papers that pro-
pose to fill gaps in the convergence theory appear regularly. These
gaps arise as engineers need to simulate specific cases that are beyond
the current state of the theory. Often engineers introduce methods
that are subsequently abstracted by mathematicians or engineers so
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that they may derive the convergence theorems. The theory is the off-
spring of the technique. As such, the theory is only fully understood
when one also understands the corresponding application.

This last statement is nicely illustrated by an example. The FEM
theory is written for Sobolev spaces. The idea is that you have a
PDE defined for a function on a domain. Mathematical analysis has
proved the existence of a solution u for certain cases but without pro-
viding a specific representation. FEM provides a family of approxi-
mate solutions wuy, for partitions of the domain. In this case, h is a
parameter associated to the partition size. The convergence theorem
should state that u;, — u as h — 0. But then there must be a metric
space that contains both v and the family u;,. Since u is the solution
to a PDE, then it must be differentiable. However, the u;, are usually
piecewise polynomial functions and often not differentiable. They are
however weakly differentiable and Sobolev spaces are metric spaces
of weakly differentiable functions. Hence, this structure is the natu-
ral space to support convergence. However, this is only natural for
people who have experienced doing FEM.

But we do not begin with the numerical technique. We begin
with the application. The applications are the source. They give rise
to the continuous mathematical model. The numerical technique is
the means to resolving the mathematical model while the theory
validates the connection between method and model. Therefore, we
begin with applications. Some of these applications are historical
while others are current. We use them as a vehicle to methods. Later,
we turn our attention to the validating theory.

It is not our intention to be encyclopedic. This is a basic
introduction to the topic for a graduate student with mathemati-
cal background in linear algebra and mathematical analysis includ-
ing the elements of measure theory, functional analysis and Fourier
transforms. In an introduction, the writer can be narrow in scope
and complete in treatment or broad in scope but somewhat superfi-
cial in treatment. We are broad in scope in that we look at several
techniques. However, we are not superficial in what we do and the
questions we pose. Rather, we have restricted our treatment to
the standard cases. It is our contention that this introduction will
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provide the reader or student with sufficient background to be able to
access the numerical analysis literature and thereby develop the deep
understanding of those settings of particular interest. We present here
the background necessary to do advanced work.

We have tried to include most of what is necessary based on a
standard background in measure theory and some basic results of
functional analysis. Beyond this, we have included most proofs. How-
ever, theory based on special constructs is omitted. In these cases,
we point the reader to a currently available reference. We do not
want the reader to get bogged down in details whose inclusion has
more to do with completeness than with understanding. Our singular
purpose is to introduce numerical analysis both as applied technique
and as theoretical mathematics. We remain focused on this goal.

This book proceeds as follows. In Part 1, we focus on applications
and techniques or methods. In Part 2, we present the theory. We
begin Part 1 with techniques as seen from a list of interesting and
important application areas. These include finance, mechanical engi-
neering, civil engineering and biology. More specifically, we include
fluids, traffic, environmental protection, population studies, chemo-
taxis and options pricing. We have chosen the list to illustrate the
breadth of the topic.

We have matched techniques to applications in a manner that
covers a broad list of methods. We have included methods such
as Runge-Kutta and midpoint ODE methods, explicit, implicit and
Crank-Nicholson FDM, trapezoid, and Adams-Bashford time step-
ping on top of a spatial FEM realization. We also see FEM both on
rectangular and triangular partitions and three variations of colloca-
tion method, spectral collocation in one spatial dimension, Gaussian
collocation or OSC in one and two dimensions and discontinuous col-
location in 2D using a triangular partition. Of course each application
can be approached from more than one point of view.

We have mostly stayed away from 3D. Most interesting 3D appli-
cations require more computing power than a single processor com-
puter can provide. Currently, nearly all academic institutions have
access to high performance computing. Soon we may see a high
performance computer on every desktop. However, there is little
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conceptual difference between two or higher dimensions. Hence, we
make only occasional reference to higher dimensional techniques.

In Part 1, we make special effort to lead the reader through the
multi-step FEM process. It is somewhat controversial whether a stu-
dent can be expected to carry out an FEM on the first go. We feel
this is achievable provided the student is handed data files for the
elements and nodes and provided the context is sufficiently simple. In
addition, we contend that reaching this milestone is an essential step
toward grasping the topic. Even if the student sees only the simplest
case, everything afterward can be understood as a modification or
extension.

Also in Part 1, we pay special attention to visualizing the com-
puted results. We are convinced that this is the most effective way to
communicate the results of a study. In this regard, it is critical that
the researcher maintains clear focus on the purpose of the project
when preparing the output.

In Part 2, we first look at FDM. We begin with the Lax Equiva-
lence Theorem. Subsequently, we look at the special issues associated
to implementations of FDM for elliptical, parabolic and hyperbolic
PDE. As all transient processes are resolved via time stepping and
all time stepping is resolved using finite differences, it is essential to
begin the theory here.

The most complex procedure is FEM. It is the gold standard of
PDE simulation techniques. We begin with a chapter that gives a
detailed description of the technique. Here, we discuss the details of
the geometric model, the assembly process and the application of
boundary values. The convergence theorem for a class of elliptical
PDE is the most mathematically demanding part of the book. This
requires that we detour into Sobolev spaces. In this regard, we have
included some of the basic results while others are omitted as they
would lead us too far afield. We include the Lax-Milgram theorem
and the Bramble-Hilbert lemma as two milestones along this path.
However, we omit much of the Sobolev embedding theory.

Our last major topic is the theory of collocation method. Here, we
look at three varieties, the Gaussian collocation or OSC, the spectral
version and finally an FEM type that supports triangular domain



