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PREFACE

This book evolved from the conference 'Computer-aided analysis
and design of reinforced concrete structures' which was held in
Split, Yugoslavia in September 1984. The conference attracted
260 participants and it became apparent during discussions in
Split that there was a real need for a more considered view of
recent developments in this general field of research. bearing
this in mind, we invited a number of contributions for a state-
of-the-art text on the theme of 'Computational modelling of
reinforced concrete structures'. The resulting text contains
chapters from authors present at the conference and others who
are also actively involved in research aimed at the development
of efficinet, accurate and reliable computational models for
reinforced concrete structures.

The book has two main themes: the first six chapters deal with
constitutive modelling of concrete whereas the last six
concentrate on the development of numerical models and their
application in the analysis and design of reinforced concrete
structures.  Practitioneers and research workers have 1long
recognised the importan;e of all aspects of computational
modelling. To obtain reliable and realistic solutions from
analytical and computational procedures, the constitutive and
numerical models and also nonlinear solution techniques must be
carefully checked for accuracy and consistency. The
contributions in this text reflect the considerable activity in
this research area in recent years.

We wish to express our sincere thanks to all of the authors for
their _cooperation in producing a set of stimulating contrib-
utions.

Ernest Hinton and Roger Qwen
Swansea, June 1986
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.

NON=LINEAR ANALYSIS OF REINFORCED CONCRETE SLABS

R. J. Cope
Department of Civil Engineering

Plymouth Polytechnic

SUMMARY

Constitutive models for use in non-linear analytical pro-
cedures to predict the post-cracking response of reinforced
concrete slabs are reviewed. Many of the proposed models of
concrete behaviour are based on the results of tests of plain
concrete specimens. In view of the inherent scatter in such
results, the variation in material properties throughout a
slab, and the influences of reinforcing bars, it is argued
that the pursuit of great accuracy is not warranted. The main
influences of reinforced concrete behaviour on slab responses
are discussed and the current trends and difficulties in the
formulation of constitutive models for the cracked composite
material are described.

1. INTRODUCTION

To date, procedurss for the analysis and design of rein-
forced concrete slabs have been based mainly on empirical
rules, or on simplified treatments of material properties,
such as those assumed for linear and rigid-plastic methods [1].
Non-linear methods of anwlysis could be used to predict, more
realistically, the behaviour of non-standard slabs with known
patterns of loading. They could also-be used to assess the
performance of existing slabs under particular overloads and
when damaged. Because of the inherent uncertainties goncern-

_1ng concrete properties, analytical predictions are unlikely
to be very reliable when the structural response is depsndent
on those properties. However, for most slabs, structural res-
ponse 1s determined mainly by structural cracking and by
yielding of reinforcement at high load levels. In such circ-
umstances, non-linear methods of analysis have much to-offer.

In this chapter, infusrctizo con concrete properties in
slabs and material models for use in non-linear analytical
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procedures are reviewed. The text attempts tc explain the
current state of the art and the current lines of development.

Concrete in a slab is subjected to a variety of stress
states. In the immediate vicinity of heavy concentrated load-
ing and near supports, it may be necessary to consider triax-
1al conditions. However, reliable test data on triaxial rein-
forced concrete properties are scarce and triaxial stress-
strain relationships are not considered in detail here. Away
from concentrated loading, it is generally assumed that con-~
sideration of biaxial effects is sufficient. However, most
biaxial test data are from plain concrete specimens, the
behaviour of which may not accurately represent that of a con-
crete element in a slab which is restrained by reinforcement
and by surrounding, less highly stressed concrete. Alsc, it
is well established that the tensile strength of a plain con-
crete beam or slab is strongly influenced by the strain grad-
ient over its depth. Close to cracks and slab edges, and in
zones of slabs subjected to predominantly one way bending,
uni-axial conditions may prevail.

2. UNI-AXIAL, COMPRESSIVE STRESS-STRAIN RESPONSE

.Lonsideration of uni-axial stress-strain equations for
plain concrete under short term loading is a useful starting
point for a discussion of more complex conditions, and a con-
siderable quantity of test date is available. Popovics {2]
has reviewed the work of many researchers, and he noted that
the average strain is the result of many, small, varying, dis-
crete deformations, that occur in the various constituents of
a concrete. Deduced material propertises based solely on the
cylinder (or cube) strength are, therefore, likely to be in
error. This finding has been confirmed by Mirza et &l {31,
who presented data, obtained from hundreds of laboratory tests,
on the scatter of measured tensile strengths and initial
elastic moduli about predicted values. When target or char-
acteristic compressive strengths of standard specimens are all
that 1s available to a designer, precision and great sophist-
icetion are not warranted in a model of material behaviour.
Popovics alsa noted that the inelastic part of the average
strain is greater for the first application of load to a cert-
ain level, than for a subsequent application to the same level.
This observation implies that constitutive equations based on
test data for progressively increasing loading are, strictly,
only applicable to the first loading of the concrete in a
structure.

v In a subsequent paper, Popovics [4] noted that stress-
strain curves had different characteristics according to
whether the load was applied in stress or strain increments,
see Fig. la. Using triaxial test data, Gerstle et al [5] have
argued that the falling part of the stress-strain curve is
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mainly dependent aon the nature of the testing machine, and, in
particular, on the stiffness of its interface with the spec-
imen. If thers were no restraint, the concrete would fail
completely at its maximum stress. It follows that test data
can only be valid for strains bslow the strain level corres-
ponding to the maximum stress. In the general case, this
probably corresponds to all strain states up to a strain state
corresponding to the minimum volume of a specimen.

In a concrete structure, a failing element is restrained
by surrounding concrete, which may be less highly stressed,
and by steel reinforcement. To date, therse is no test data
known to the author that relatss the falling branch of the
stress-strain curve ta the stiffness of the surrounding mater-
ial. There is ample test data, however, to show that concrete
in the compression zone of a beam, or slab, doss not fail com-
pletely when the strain corresponding- to the maximum uni-axial
stress is reached, and that considerably greater strains can
be accommodated.

From the test data he studied, Popovics proposad the fol-
lowing uni-axial stress-strain formula

o = g, (&) n - (1)
"€ (n-1+ (e/eg)"
€,) )

whera n = 0.58 g, + 1.0 for normal weight conéretes; o, is
the maximum stress {N/mm?) and €, 18 the corresponding strain.
When €, is not known, which is the usual case facing a design-~
er, Popovics suggested that, for normal weight: coneretes, it
could be evaluated using:

-4 .
€, = 9.368 x 10 “/o, : (2)

Although Eq. (2) was fitted to data exhibiting considerable
scatter, Popovics demonstrated that when combined with Eq. (1),
it led to good predictions of uni-axial stress-strain curves
for normal weight concretes of varying strength, including
their descending branch (sic).

The tangent modulus is given by differentiating Eq. (1).
Thus,

g % (1 - /e nin - 1) .
Et=-d-e—=~e— a (3)
8 (n -1+ (e/gy) )2

Tests on plain concrete specimens under sccentric loading
[6] have indicated that the stress-strain curves for concrete
in a flexural member are similar to those ‘derived from axially
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Fig. 1 Uni-axial stress-strain for plain concrete
(a) based on [4]

{b) based on {7}

(c) based on [9,26]

loaded cylinders. The results also showed that, up to a max-
imum compressive strain of about 0.003, there was no visible
cracking or spalling. Other tests, sse, for example, [7] have
indicated even greater ductility and strength in the presence
of strain gradient see Fig. 1b. These improvements in behav-
iour are probably due to the cbnfining actions of the less
highly stressed concrete, which delays the appearance of trans-
verse micro-crackihg. Blume et al [8] recommend the use of a
maximum strain of 0.004 for ultimate curvature calculations
involving concrete not confined by reinforcement.

) Caution should be exercised when extrapolating stress-
strain equations to concretes outside the range for which they
have been validated. High strength concretes have recently
been intrcduced for bridges in the USA and Japan and, when
unconstrained, these may be relatively brittle {s]. Figure 1lc
compares tygical stress-strain curves, from 100 x 200 mm cyl-
inder tests, for'different strength concretes made with the o
same aggiegates. Although the strength range is large, it can
be seen that there are relatively small changes in the initial



modulus and in the strain corresponding to the peak failure

- stress. Although the higher strength concretes appsar to be
relatively brittle, the lack of a descending branch may be
more a function of the testing machine than of the material
[26].

The author has obtained reasonable predictions of slab
behaviour using Eq. (1) for concrete, and by assuming either
complete loss of strength for € 2 g€, [10]. or by assuming a
constant compressive stress for €, < € < 0.0035, followed by
complete loss of strength for € > 0.0035 {11]. However, it
should be rioted that the examples studied werge not very sens-
itive to the compressive strength or stiffness of concrete.

3. UNI-AXIAL, TENSILE STRESS-STRAIN RESPONSE

The uni-axial tensile stress-strain response of plain
concrete 1s approximately linear. When.tested under strain
control, however, some softening becomes apparent, and spec-
imens can resist a falling tensile force with strains that are
segveral times the strain at maximum stress.

The flexural-tensile strength determingd from a modulus
of rupture test tends to be higher than the tensile strength
Of a split cvlinder, which in turn tends to be higher than the
tensile strength obtained from a direct tension test. The
range of values obtained from specimens cast frem the same
concrete can be large, as can the.scatter about values pred-
icted from the compressive strength [3].

There is a number of contributory reasons for these vari-
ations. In a direct tension test, concrete on the weakest
plane fails and there is a large number of potential failure
planes. In a split cylinder test. the stress is not uniform
and the test is effectively‘performed on a single plane. Con-
crete in a modulus of rupture test is subjected to a linearly
distributed strain over the depth. The theory assumes a cor-
responding linear stress distribution, which is not strictly
true. Also, it is known that a strain gradient enhances the
strength of a specimen. There are many potential failure
planes, but concrete fibres subjected to the maximum strain
are limited to the soffit zone of a test beam.

The tensile behaviour of concrete in a structure may be
different to that of a standard specimen. When tensile con-
crete in a structure is restrained by adjacent portiens of con-
crete which are less highly stressed (or are in compression,
as may be the case with composite construction) the ultimate
tensile strain may be increased significantly. However, when
concrete is reinforced, the bars muy act as stress raises and
adversely effect compaction locally. Also, restraint to early
thermal contraction, while the concrete is weak, may lead to



the presence of additional internal tensile stresses and
micro-cracking. Indirect evidence that the direction of
weakening of the effective tensile strength is biased by the
reinforcement directions in a slab has been reported [12].

The predicted. non-linear response of a reinforced member
to the first application of loading is quite sensitive to the
specified tensile strength of the concrete {12]. In the
author's sxperience of beam and slab analyses, rsasonable pred-
ictions are usually obtained when the split cylinder strength
of a standerd specimen is used for the tensile strength of the
concrete. However, a lower value may be needed when there 1is
transverse reinforcement positioned close to the soffit (as in
a model of a slab), and running in a direction close to that
of the expected cracking.

From the above discussion, it can be appreciated that the
effective tensile strength of the concrete in a structure may
be difficult to determine. Even its average value and coeff-
icient of variation cannot be determined with any dsgree of
precision. )

3.1 Tensile Toughness

Concrets is not a perfectly brittle material and possessas
a property that Hillerborg has called, 'tensile toughness’
{13]. This toughness plays a substantial role in controlling
the ghear capacity of a member and the spacing and width of
bending and shrinkage cracks.

) For a detailed analysis, a single stress-strain curve
cannot be used for tension, as the difference in behaviour
between concrete in a fracture zons and that outside the zone
is too great. Hillerborg has proposed the use of a stress-
strain curve for concrete outside the fracture zone and a
stress "erack width” relationship for the cracking zone. The
concept 1s illustrated for a tensile member loaded under dis-
placement control in Fig. 2a-b. The deformation on a gauge
length & outside the fracture zone is fLe, whersas that on the
same gauge length including a fracture zone is %¢ + w. After
the peak tensile stress, concrete between fracture zones is
predicted to experience reducing strains, while the cracks
form.

Hillerborg has argued that it is reascnable to assume the
0 - w curve to be a material property for concrete. A typical
stress-deformation curve over a gauge length of 100 mm is shown
in Fig. 2e¢. The area helow the curve gives the ensrgy absorbed
per unit area over a 100 mm length and is a measure of the ten-
" sile toughness. From the shape of the curve, it can be appp-
reciated that the toughness is mainly dependent on the ¢ - w
curve.,
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Experiments indicate that the average length of a fracture
zone in the stress direction is of the same order as the max-
imum aggregate size [14]. For analytical purposes, it can
therefore be considered as a fictitious crack that precedes the
formation of a discrete crack in a tensile member and as a fic-
titious extsnsion of a flexural crack in a bending member. In
the smeared crack analytical approach, the 0 - w curve has to
be converted toc an equivalent stress-strain curve.

The material parameters used to do this are the modulus of
- elasticity, E, the tensile strength, f+ and the fracture energy
Gf. The latter guantity is giveh by the area under the 0 ~ w
curve and can be obtainsd from test data. However, unfortun-
&tely, these exhibit considerable scatter. For normal weight
concretes, typical values for Gs 1lie in the range 200 f%/E to
400 f%/E N/mm,

Nallathembi et al [15] have studied the effects of member
and crack sizes, water-cement ratio and coarse aggregate text-
ure on the fracture toughness of concrete. Based on their
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experimental data from beams of width b, depth d. length L and
with a notch of depth g, they suggest that Gy could be abtain-
ed from .

P é 0.173 d)u.sa)+o.u(a/d)

£ 1 (2)

= 4
. [L (4a)

Gf = 0.125 (

where fc and E are the compressive strength and elastic modul-
us of the concrete obtained from standard cylinder tests and g
is the maximum size of the coarse aggregate. All parameter
values are in N and m units. Presumably, for a slab, b would
be set to the dimension of the cracking area normal to the’
tensile stress and a to the depth of an existing crack.
However, application of the formula to a slab with a varying
moment field could be accomplished, at best, only approximat-
ely.

Bazant and Oh [16] have suggested use of the formula

= 2 .
Gf = (2.72 + 0.0214'Ft]ft g/E (4b)

- where fi is the tensile strength of the concrete and all of
the parameters are in 1b and inch units.

When an eduivalent stress-strain curve is used in a Finite
Element analysis, the strains are obtained at a discrete num-
ber of sampling statiagns. Constitutive equations in the form
of stress-strain curves are imposed at these stations and the
spacings of the stations give the gauge lengths over which
average defarmations are considered. To obtain mesh independ-
ent solutions, it is necessary to take the aamp@ing station .
spacing into account when specifying the equivalent post peak,
tensile stress-strain curve [16].

If the spacing of the sampling stations is s, and a bi-
linear eguivalent stress-strain curve is adopted., see Fig. 2d,
the area under the stress-deformation curve is given by
A = [ olsde) = asfyey/2. Making the assumption that this area
is a constant for the material, Gp, gives

o = ZGF/(SftEt) (4c)

Bazant [17] has suggested that when o makes the descending
branch vertical, a reduced value of fy should be used to rstain
the essential shape of the bi-linear curve.

4. BI-AXIAL, STRESS-STRAIN RESPONSE

In general, for concrete in compression, the presence of
an orthogonal compressive stress leads to a stiffer response
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and to greater strength. This is due to the effect of
Poisson's ratio and, at high stress levels, to the delay of
transverse micro-cracking. In tension, the presence of an
orthogonal compressive stress reduces fhe tensile stiffness
and strength, as cracking is encouraged. Bi-axial tensile
strengths are similar to the uni-axial strength.

The constitutive equations for concrete under plane-stress

conditions have the general form: .
€, b by3 b3 IR 0,
€2 b2y Ba2 P B2y O,
= (5)
€, bs, b3, bj; b3y O,
Y b4y by, Dys 7 by, T

where.o, and 0, are the orthogonal in-plane stresses; €, and
€, are the corresponding direct strains; 0, and £, are the
normal stress and strain, respectively; and T and y are the
in-plane shear stress and strain, respectively.

There are too many coefficients to handle economically
and simplifying assumptions are usually made. For plane
stress conditions,. 0; = 0. Therefore, the coefficients in the
third column of the matrix are not of interest. If it is
assumed that energy is conserved (no frictional losses, for
example)) the matrix of coefficients must be symmetric about
the leading diagonal. If it is further assumed that the con-
crete is orthotropic, with the directions of material ortho-
tropy coinciding with the principal stress directions, and
that no shear strains are induced by the application of inc-
rements of the principal stresses, then

b“l =bl¢2 =bh3=b3b =0

With these assumptions, the constitutive equations reauce

to: . <
& b1 By, ] %,
= (5a)
e2 b12 b22 J 0'2
€y = by, 0, * by, 0, and Y = by T {5b,5¢c)

The coefficients of these eguations can be exprassed in
terms of material properties by considering uni-axial loadings.
(1) Apply o0,, with 02 =T=20, then by, = €,/0, = 1/E,, b,, =
€,/0, = =V,,/E,, and by, = g,/0, = -v,,/E,, where E, is the

r'd



